• Title/Summary/Keyword: tDCS

Search Result 221, Processing Time 0.03 seconds

Effectiveness of Transcranial Direct Current Stimulation(tDCS) on Upper Extremity Function in Stroke Patients : A Systematic Review and Meta-Analysis (뇌졸중 환자의 상지기능에 대한 경두개 직류자극술 효과 : 체계적 고찰 및 메타분석)

  • Won, Kyung-A;Yang, Min Ah;Park, Hae Yean;Park, Ji-Hyuk
    • Therapeutic Science for Rehabilitation
    • /
    • v.9 no.1
    • /
    • pp.7-23
    • /
    • 2020
  • Objective : The purpose of this article was to analyze the effects of tDCS on the recovery of upper limb function in stroke patients. Methods : We searched for papers published in journals between 2009 to 2018, using NDSL and RISS. A total 14 experimental research papers were selected for analysis. The quality of the 14 articles was evaluated using the PEDro scale and 12 articles were analyzed through the Comprehensive Meta Analysis 3.0 program. Results : All of the 14 articles that were systematically reviewed in this study were published in foreign journals. The effect sizes for upper extremity(U/Ex) strength and U/Ex motion were 0.19(small size effect) and 0.49(medium size effect) respectively. Furthermore, the effect sizes of anode mode and cathode mode were 0.71(large size effect) and 0.41(medium size effect), respectively. The effect size of U/Ex motion and the anode mode were statistically significant(p<0.05). Conclusion : We identified that tDCS can be a useful rehabilitation technique for stroke patients with limited upper body function. These findings are expected to help with suggestions for basic data on new rehabilitation techniques for stroke patients and the planning of effective interventions.

Nanoliposomes of L-lysine-conjugated poly(aspartic acid) Increase the Generation and Function of Bone Marrowderived Dendritic Cells

  • Im, Sun-A;Kim, Ki-Hyang;Ji, Hong-Geun;Yu, Hyoung-Gyoung;Park, Sun-Ki;Lee, Chong-Kil
    • IMMUNE NETWORK
    • /
    • v.11 no.5
    • /
    • pp.281-287
    • /
    • 2011
  • Background: Biodegradable polymers have increasingly been recognized for various biological applications in recent years. Here we examined the immunostimulatory activities of the novel poly(aspartic acid) conjugated with L-lysine (PLA). Methods: PLA was synthesized by conjugating L-lysine to aspartic acid polymer. PLA-nanoliposomes (PLA-NLs) were prepared from PLA using a microfluidizer. The immunostimulatory activities of PLA-NLs were examined in mouse bone marrow-derived dendritic cells (BM-DCs). Results: PLA-NLs increased the number of BM-DCs when added to cultures of GM-CSF-induced DC generation on day 4 after the initiation of cultures. Examination of the phenotypic properties showed that BM-DCs generated in the presence of PLA-NLs are more mature in terms of the expression of MHC class II molecules and major co-stimulatory molecules than BM-DCs generated in the absence of PLA-NLs. In addition, the BM-DCs exhibited enhanced capability to produce cytokines, such as IL-6, IL-12, TNF-${\alpha}$ and IL-$1{\beta}$. Allogeneic mixed lymphocyte reactions also confirmed that the BMDCs were more stimulatory on allogeneic T cells. PLA- NL also induced further growth of immature BM-DCs that were harvested on day 8. Conclusion: These results show that PLA-NLs induce the generation and functional activities of BM-DCs, and suggest that PLA-NLs could be immunostimulating agents that target DCs.

Immunomodulatory Activity of Ginsan, a Polysaccharide of Panax Ginseng, on Dendritic Cells

  • Kim, Mi-Hyoung;Byon, Yun-Young;Ko, Eun-Ju;Song, Jie-Young;Yun, Yeon-Sook;Shin, Taek-Yun;Joo, Hong-Gu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.3
    • /
    • pp.169-173
    • /
    • 2009
  • Ginsan, a Panax ginseng polysaccharide that contains glucopyranoside and fructofuranoside, has immunomodulatory effects. Although several biologic studies of ginsan have been performed, its effects on dendritic cells (DCs), which are antigen-presenting cells of the immune system, have not been studied. We investigated the immunomodulatory effects of ginsan on DCs. Ginsan had little effect on DC viability, even when used at high concentrations. Ginsan markedly increased the levels of production by DCs of IL-12 and TNF-${\alpha}$, as measured by ELISA. To examine the maturation-inducing activity of ginsan, we measured the surface expression levels of the maturation markers MHC class II and CD86 (B7.2) on DCs. It is interesting that ginsan profoundly enhanced the expression of CD86 on DC surfaces, whereas it increased that of MHC class II only marginally. In $^3H$-thymidine incorporation assays, ginsan-treated DCs stimulated significantly higher proliferation of allogeneic $CD4^+$ T lymphocytes than did medium-treated DCs. Taken together, our data demonstrate that ginsan stimulates DCs by inducing maturation. Because DCs are critical antigen-presenting cells in immune responses, this study provides valuable information on the activities of ginsan.

TCF4-Targeting miR-124 is Differentially Expressed amongst Dendritic Cell Subsets

  • Sun Murray Han;Hye Young Na;Onju Ham;Wanho Choi;Moah Sohn;Seul Hye Ryu;Hyunju In;Ki-Chul Hwang;Chae Gyu Park
    • IMMUNE NETWORK
    • /
    • v.16 no.1
    • /
    • pp.61-74
    • /
    • 2016
  • Dendritic cells (DCs) are professional antigen-presenting cells that sample their environment and present antigens to naïve T lymphocytes for the subsequent antigen-specific immune responses. DCs exist in a range of distinct subpopulations including plasmacytoid DCs (pDCs) and classical DCs (cDCs), with the latter consisting of the cDC1 and cDC2 lineages. Although the roles of DC-specific transcription factors across the DC subsets have become understood, the posttranscriptional mechanisms that regulate DC development are yet to be elucidated. MicroRNAs (miRNAs) are pivotal posttranscriptional regulators of gene expression in a myriad of biological processes, but their contribution to the immune system is just beginning to surface. In this study, our in-house probe collection was screened to identify miRNAs possibly involved in DC development and function by targeting the transcripts of relevant mouse transcription factors. Examination of DC subsets from the culture of mouse bone marrow with Flt3 ligand identified high expression of miR-124 which was able to target the transcript of TCF4, a transcription factor critical for the development and homeostasis of pDCs. Further expression profiling of mouse DC subsets isolated from in vitro culture as well as via ex vivo purification demonstrated that miR-124 was outstandingly expressed in CD24+ cDC1 cells compared to in pDCs and CD172α+ cDC2 cells. These results imply that miR-124 is likely involved in the processes of DC subset development by posttranscriptional regulation of a transcription factor(s).

Effects of Mizoribine on MHC-Restricted Exogenous Antigen Presentation in Dendritic Cells

  • Song, Young-Cheon;Han, Shin-Ha;Kim, Hyun-Yul;Kim, Kwang-Hee;Kwon, Jeung-Hak;Lee, Sang-Jin;Ha, Nam-Joo;Lee, Young-Hee;Lee, Chong-Kil;Kim, Kyung-Jae
    • Archives of Pharmacal Research
    • /
    • v.29 no.12
    • /
    • pp.1147-1153
    • /
    • 2006
  • Mizoribine (MZR) has been shown to possess immunosuppressive activity that selectively inhibits the proliferation of lymphocytes by interfering with inosine monophosphate dehydrogenase. The efficacy of MZR is not only in patients who have had renal transplantation, but also in patients with rheumatoid arthritis (RA), lupus nephritis, and primary nephritic syndrome. Because the exact mechanism of its immunosuppressive action is not clear, the object of this study was to examine the ability of MZR to regulate the antigen presenting cells (APCs), dendritic cells (DCs). In this work, we tested whether MZR ($1{\sim}10\;{\mu}g/mL$) could inhibit the cross-presentation of DCs. DC2.4 cells ($H-2K^{b}$) or bone marrow-derived DCs (BM-DCs) generated from BM cells of C57BL/6 mouse ($H-2K^{b}$) were cultured in the presence of MZR with OVA-microspheres, and the amount of OVA peptide-class I MHC complexes was measured by a T cell hybridoma, B3Z, that recognizes OVA (257-264 : SIINFEKL)-$H-2K^{b}$ complex and expresses-galactosidase. MZR profoundly inhibited the expression of SIINFEKL-$H-2K^{b}$ complexes. This inhibitory activity of MZR appeared to affect the phagocytic activity of DCs. MZR also decreased IL-2 production when we examined the effects of MZR on $CD4^{+}$ T cells. These results provide an understanding of the mechanism of immunosuppressive activity of MZR on the inhibition of MHC-restricted antigen presentation and phagocytic activity in relation to their actions on APCs.

Ginsenoside Rp1 Exerts Anti-inflammatory Effects via Activation of Dendritic Cells and Regulatory T Cells

  • Bae, Jin-Gyu;Koo, Ji-Hye;Kim, Soo-Chan;Park, Tae-Yoon;Kim, Mi-Yeon
    • Journal of Ginseng Research
    • /
    • v.36 no.4
    • /
    • pp.375-382
    • /
    • 2012
  • Ginsenoside Rp1 (G-Rp1) is a saponin derivate that provides anti-metastatic activities through inhibition of the NF-${\kappa}B$ pathway. In this study, we examined the effects of G-Rp1 on regulatory T cell (Treg) activation. After treatment of splenocytes with G-Rp1, Tregs exhibited upregulation of IL-10 expression, and along with dendritic cells (DCs), these Tregs showed increased cell number compared to other cell populations. The effect of G-Rp1 on Treg number was augmented in the presence of lipopolysaccharide (LPS), which mimics pathological changes that occur during inflammation. However, depletion of DCs prevented the increase in Treg number in the presence of G-Rp1 and/or LPS. In addition, G-Rp1 promoted the differentiation of the memory types of $CD4^+Foxp3^+CD62L^{low}$ Tregs rather than the generation of new Tregs. In vivo experiments also demonstrated that Tregs and DCs from mice that were fed G-Rp1 for 7 d and then injected with LPS exhibited increased activation compared with those from mice that were injected with LPS alone. Expression of TGF-${\beta}$ and CTLA4 in Tregs was increased, and upregulation of IL-2 and CD80/CD86 expression by DCs affected the suppressive function of Tregs through IL-2 receptors and CTLA4. These data demonstrate that G-Rp1 exerts anti-inflammatory effects by activating Tregs in vitro and in vivo.

The impact of functional brain change by transcranial direct current stimulation effects concerning circadian rhythm and chronotype (일주기 리듬과 일주기 유형이 경두개 직류전기자극에 의한 뇌기능 변화에 미치는 영향 탐색)

  • Jung, Dawoon;Yoo, Soomin;Lee, Hyunsoo;Han, Sanghoon
    • Korean Journal of Cognitive Science
    • /
    • v.33 no.1
    • /
    • pp.51-75
    • /
    • 2022
  • Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation that is able to alter neuronal activity in particular brain regions. Many studies have researched how tDCS modulates neuronal activity and reorganizes neural networks. However it is difficult to conclude the effect of brain stimulation because the studies are heterogeneous with respect to the stimulation parameter as well as individual difference. It is not fully in agreement with the effects of brain stimulation. In particular few studies have researched the reason of variability of brain stimulation in response to time so far. The study investigated individual variability of brain stimulation based on circadian rhythm and chronotype. Participants were divided into two groups which are morning type and evening type. The experiment was conducted by Zoom meeting which is video meeting programs. Participants were sent experiment tool which are Muse(EEG device), tdcs device, cell phone and cell phone holder after manuals for experimental equipment were explained. Participants were required to make a phone in frount of a camera so that experimenter can monitor online EEG data. Two participants who was difficult to use experimental devices experimented in a laboratory setting where experimenter set up devices. For all participants the accuracy of 98% was achieved by SVM using leave one out cross validation in classification in the the effects of morning stimulation and the evening stimulation. For morning type, the accuracy of 92% and 96% was achieved in classification in the morning stimulation and the evening stimulation. For evening type, it was 94% accuracy in classification for the effect of brain stimulation in the morning and the evening. Feature importance was different both in classification in the morning stimulation and the evening stimulation for morning type and evening type. Results indicated that the effect of brain stimulation can be explained with brain state and trait. Our study results noted that the tDCS protocol for target state is manipulated by individual differences as well as target state.

The Optimal Activation State of Dendritic Cells for the Induction of Antitumor Immunity (항종양 면역반응 유도를 위한 수지상세포의 최적 활성화 조건)

  • Nam, Byung-Hyouk;Jo, Wool-Soon;Lee, Ki-Won;Oh, Su-Jung;Kang, Eun-Young;Choi, Yu-Jin;Do, Eun-Ju;Hong, Sook-Hee;Lim, Young-Jin;Kim, Ki-Uk;Jeong, Min-Ho
    • Journal of Life Science
    • /
    • v.16 no.6
    • /
    • pp.904-910
    • /
    • 2006
  • Dendritic cells (DCs) are the only antigen presenting cells (APCs) capable of initiating immune responses, which is crucial for priming the specific cytotoxic T lymphocyte (CTL) response and tumor immunity. Upon activation by DCs, CD4+ helper T cells can cross-prime CD8+ CTLs via IL-12. However, recently activated DCs were described to prime in vitro strong T helper cell type 1 $(Th_1)$ responses, whereas at later time points, they preferentially prime $Th_2$ cells. Therfore, we examined in this study the optimum kinetic state of DCs activation impacted on in vivo priming of tumor-specific CTLs by using ovalbumin (OVA) tumor antigen model. Bone-marrow-derived DCs showed an appropriate expression of surface MHC and costimulatory molecules after 6 or 7-day differentiation. The 6-day differentiated DCs pulsed with OVA antigen for 8 h (8-h DC) and followed by restimulation with LPS for 24 h maintained high interleukin (IL)-12 production potential, accompanying the decreased level in their secretion by delayed re-exposure time to LPS. Furthermore, immunization with 8-h DC induced higher intracellular $interferon(IFN)-{\gamma}+/CD8+T$ cells and elicited more powerful cytotoxicity of splenocytes to EG7 cells, a clone of EL4 cells transfected with an OVA cDNA, than immunization with 24-h DC. In the animal study for the evaluation of therapeutic or protective antitumor immunity, immunization with 8-h DC induced an effective antitumor immunity against tumor of EG7 cells and completely protected mice from tumor formation and prolonged survival, respectively. The most commonly used and clinically applied DC-based vaccine is based on in vitro antigen loading for 24 h. However, our data indicated that antigen stimulation over 8 h decreased antitumor immunity with functional exhaustion of DCs, and that the 8-h DC would be an optimum activation state impacted on in vivo priming of tumor-specific CTLs and subsequently lead to induction of strong antitumor immunity.

The Effect of Gefitinib on Immune Response of Human Peripheral Blood Monocyte-Derived Dendritic Cells (인간 말초혈액 단핵구 유래 수지상세포의 면역반응에 미치는 Gefitinib의 영향)

  • Cho, Jin-Hoon;Kim, Mi-Hyun;Lee, Kwang-Ha;Kim, Ki-Uk;Jeon, Doo-Soo;Park, Hye-Kyung;Kim, Yun-Seong;Lee, Min-Ki;Park, Soon-Kew
    • Tuberculosis and Respiratory Diseases
    • /
    • v.69 no.6
    • /
    • pp.456-464
    • /
    • 2010
  • Background: Synergistic antitumor effects of the combined chemoimmunotherapy based on dendritic cells have been reported recently. The aim of this study is to search new applicability of gefitinib into the combination treatment through the confirmation of gefitinib effects on the monocyte derived dendritic cells (moDCs); most potent antigen presenting cell (APC). Methods: Immature and mature monocyte-derived dendritic cell (im, mMoDC)s were generated from peripheral blood monocyte (PBMC) in Opti-MEM culture medium supplemented with IL-4, GM-CSF and cocktail, consisting of TNF-${\alpha}$ (10 ng/mL), IL-$1{\beta}$ (10 ng/mL), IL-6 (1,000 U/mL) and $PGE_2$ ($1{\mu}/mL$). Various concentrations of gefitinib also added on day 6 to see the influence on immature and mature MoDCs. Immunophenotyping of DCs under the gefitinib was performed by using monoclonal antibodies (CD14, CD80, CD83, CD86, HLA-ABC, HLA-DR). Supernatant IL-12 production and apoptosis of DCs was evaluated. And MLR assay with $[^3H]$-thymidine uptake assay was done. Results: Expression of CD83, MHC I were decreased in mMoDCs and MHC I was decreased in imMoDCs under gefitinib. IL-12 production from mMoDCs was decreased under $10{\mu}M$ of gefitinib sinificantly. Differences of T cell proliferation capacity were not observed in each concentration of geftinib. Conclusion: In spite of decreased expressions of some dendritic cell surface molecules and IL-12 production under $10{\mu}M$ of gefitinib, significant negative influences of gefitinib in antigen presenting capacity and T cell stimulation were not observed.

Lectins Isolated from Mushroom Fomitella fraxinea Enhance MHC-restricted Exogenous Antigen Presentation

  • Kim, Hyun-Jin;Cho, Kyung-Mi;Gerelchuluun, Turmunkh;Lee, Ji-Seon;Chung, Kyeong-Soo;Lee, Chong-Kil
    • IMMUNE NETWORK
    • /
    • v.7 no.4
    • /
    • pp.197-202
    • /
    • 2007
  • Background: Immunomodulators enhancing MHC-restricted antigen presentation would affect many cellular immune reactions mediated by T cells or T cell products. However, modulation of MHC-restricted antigen presentation has received little attention as a target for therapeutic immunoregulation. Here, we report that lectins isolated from mushroom Fomitella fraxinea enhance MHC-restricted exogenous antigen presentation in professional antigen presenting cells (APCs). Methods: Lectins, termed FFrL, were isolated from the carpophores of Fomitella fraxinea, and its effects on the class I and class II MHC-restricted presentation of exogenous ovalbumin (OVA) were examined in mouse dendritic cells (DCs) and mouse peritoneal macrophages. The effects of FFrL on the expression of total MHC molecules and the phagocytic activity were also examined in mouse DCs. Results: DCs cultured in the presence of FFrL overnight exhibited enhanced capacity in presenting exogenous OVA in association with class I and class II MHC molecules. FFrL increased slightly the total expression levels of both class I (H-$2K^b$) and class II (I-$A^b$) MHC molecules and the phagocytic activity of DCs. Antigen presentation-enhancing activity of FFrL was also observed in macrophages isolated from mouse peritoneum. Conclusion: Lectins isolated from the carpophores of Fomitella fraxinea increase MHC-restricted exogenous antigen presentation by enhancing intracellular processing events of phagocytosed antigens.