• 제목/요약/키워드: synthesis method of graphene

검색결과 79건 처리시간 0.026초

Sonophotocatalytic Performance of Bi2Se3-Graphene/TiO2 Hybrid Nanomaterials Synthesized with a Microwave-assisted Method

  • Zhu, Lei;Jo, Sun-Bok;Ye, Shu;Ullah, Kefayat;Oh, Won-Chun
    • 한국세라믹학회지
    • /
    • 제51권3호
    • /
    • pp.162-169
    • /
    • 2014
  • This paper introduces a microwave-assisted synthesis method to prepare hybrid $Bi_2Se_3-GR/TiO_2$ nanocomposites, which exhibit superior properties over single component materials. The as-prepared composites were characterized by XRD, UV-vis absorbance spectra, SEM,TEM, EDX, and BET analyses, revealing uniform covering of the graphene nanosheet with $Bi_2Se_3$ and $TiO_2$ nanocrystals. For visible light photocatalysis of Rh.B, a significant enhancement in the reaction rate was consequently observed with $Bi_2Se_3-GR/TiO_2$ composites. The degradation rate($k_{app}$) obtained for sonophotocatalysis was $6.8{\times}10^{-3}min^{-1}$, roughly 2.2 times better than that of VL photocatalysis under higher concentrations of Rh.B. The sonophotocatalysis was faster due to greater formation of reactive radicals as well as an increase of the active surface area of the $Bi_2Se_3-GR/TiO_2$ composites. The high activity is attributed to the synergetic effects of high charge mobility and red shift of the absorption edge of $Bi_2Se_3-GR/TiO_2$.

수열합성법을 이용한 코발트 황화물-산화그래핀 나노복합체 제조 및 전기화학적 특성 연구 (Synthesis and electrochemical properties of cobalt sulfide-graphene oxide nanocomposites by hydrothermal method)

  • 정수환;김주형
    • 한국결정성장학회지
    • /
    • 제33권6호
    • /
    • pp.203-209
    • /
    • 2023
  • 차세대 나트륨이온전지용 음극 소재로 유망한 코발트 황화물 나노복합체를 간단한 수열법을 통해 합성하였다. 본 연구에서는 배터리의 전기화학적 에너지 저장 성능 향상을 위해 코발트 황화물 나노입자와 환원된 산화그래핀과 복합화 된 코발트 황화물 나노복합체를 제조하여 비교해주었다. 제조된 나노복합체 전극은 가역적이고 안정적인 사이클 성능(전류밀도 200 mA g-1에서 30 사이클 후 62 %)을 보였다. 개선된 전기화학적 특성은 수열합성 과정에서 코발트 황화물의 입자 크기가 작고 균일하게 분포되어 나트륨 이온의 확산 경로를 극대화함에서 기인하였다. 뿐만 아니라 전환 반응 중 음극재의 박리 및 부피 팽창을 효과적으로 억제함으로써 차세대 나트륨이온전지용 유망한 음극 소재로써의 가능성을 보여주었다.

In-situ 법에 의한 폴리우레탄/기능화 된 그래핀 나노복합체의 합성에 관한 연구 (A Study on Synthesis of Polyurethane/Functionalized Graphene Nanocomposites by In-situ Intercalation Method)

  • 황수옥;이병환;조을룡
    • Elastomers and Composites
    • /
    • 제47권3호
    • /
    • pp.238-245
    • /
    • 2012
  • 천연 흑연으로부터 Graphene oxide(GO)를 합성한 후 diisocyanatodicyclohexylmethane($H_{12}MDI$)를 이용하여 GO의 표면을 기능화하였고, hydrazine monohydrate에 의한 환원을 통해 isocyanate-graphene sheet(i-RGO)를 얻었다. 폴리우레탄과 적합한 나노복합체를 형성하기 위하여 GO, i-RGO, 천연흑연 및 열적환원된 graphene을 서로 비교분석하였으며, i-RGO가 가장 적합한 나노충전제로 선정되었다. 선정된 i-RGO의 함량에 따른 폴리우레탄의 물성 향상을 확인하기 위하여 충전제의 함량을 다르게 하여 PU/i-RGO 나노복합체를 합성하였다. 물성 평가에서, i-RGO의 함량이 증가할수록 열적 안정성, 경도 및 접촉각(발수력)이 향상되었는데, 이는 i-RGO의 물성 특성 및 가교점 작용에 기인한 것으로 판단되었다. 다만, 인장강도와 신장률의 경우 함량이 4 wt%를 넘어갈 경우 오히려 물성이 감소하는 것을 확인할 수 있었는데, 이는 과량의 가교점 형성이 원인인 것으로 해석되었다.

이온교환법에 의한 환원 그래핀-금속 하이브리드 소재의 합성 및 특성 (Synthesis of Reduced Graphene-metal Hybrid Materials via Ion-exchange Method and its Characterization)

  • 박애리;김수민;김현;한종훈
    • 마이크로전자및패키징학회지
    • /
    • 제27권4호
    • /
    • pp.25-37
    • /
    • 2020
  • 본 연구에서는 그래핀 소재의 전기전도성 및 자기적 특성을 향상시키기 위해 산화그래핀 표면상의 산소를 포함한 기능기와 열처리 환원공정을 이용하여 환원그래핀과 금속소재를 하리브리드화 하였다. 산화 그래핀 표면의 -OH, -COOH 등의 산소 포함 기능기들을 열처리 환원시킴과 동시에 금속이온을 기능기와의 이온교환법에 의해 치환 합성하는 연구를 진행하였다. 하이브리드 소재 합성에 사용된 금속은 Fe, Ag, Ni, Zn, Fe/Ag이며 SEM, TEM 및 EDS를 통해 환원 그래핀 표면 위에 균일한 크기의 금속 입자가 비교적 구형 잘 분산되었음을 확인하였다. 그래핀 표면상의 금속입자들은 모두 산화물 형태의 구조를 가지고 있었다. 하이브리드 소재의 전기적 특성을 확인하기 위해 rGO-metal hybrid 시료를 PET film에 dip-coating 방법으로 후막 필름을 형성시킨 후 면저항을 측정하였고, SEM을 통해 시편의 두께를 측정하여 비저항을 계산한 결과, 비저항의 범위는 2.14×10-5 ~ 3.5×10-3 ohm/cm범위에 있음을 확인하였다.

환원된 산화그래핀/젤라틴 복합필름의 합성과 분석 (Synthesis and Characterization of Reduced Graphene Oxide/Gelatin Composite Films)

  • Chen, Guangxin;Qiao, Congde;Xu, Jing;Yao, Jinshui
    • 폴리머
    • /
    • 제38권4호
    • /
    • pp.484-490
    • /
    • 2014
  • Reduced graphene oxide (RGO) was fabricated using gelatin as a reductant, and it could be stably dispersed in gelatin solution without aggregation. A series of RGO/gelatin composite films with various RGO contents were prepared by a solution-casting method. The structure and thermal properties of the RGO/gelatin composite films were characterized by UV-vis spectroscopy, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), differential scanning calorimeter (DSC) and thermal gravimetric analysis (TGA). The addition of RGO enhances the degree of crosslinking of gelatin films and decreases the swelling ability of the gelatin films in water, indicating that RGO/gelatin composite films have a better wet stability than gelatin films. The glass transition temperature ($T_g$) of gelatin films is also increased with the incorporation of RGO. The presence of RGO slightly increases the degradation temperature of gelatin films due to the very low content of RGO in the composite films. Since gelatin is a natural and nontoxic biomacromolecule, the RGO/gelatin composite films are expected to have potential applications in the biomedical field.

Synthesis and characterization of polybenzoxazole/graphene oxide composites via in situ polymerization

  • Lim, Jun;Kim, Min-Cheol;Goh, Munju;Yeo, Hyeounk;Shin, Dong Geun;Ku, Bon-Cheol;You, Nam-Ho
    • Carbon letters
    • /
    • 제14권4호
    • /
    • pp.251-254
    • /
    • 2013
  • In this study, poly(amic acid) was prepared via a polycondensation reaction of 3,3'-dihydroxybenzidine and pyromellitic dianhydride in an N-methyl-2-pyrrolidone solution; reduced graphene oxide/polybenzoxazole (r-GO/PBO) composite films, which significantly increased the electrical conductivity, were successfully fabricated. GO was prepared from graphite using Brodie's method. The GO was used as nanofillers for the preparation of r-GO/PBO composites through an in situ polymerization. The addition of 50 wt% GO led to a significant increase in the electrical conductivity of the composite films by more than sixteen orders of magnitude compared with that of pure PBO films as a result of the electrical percolation networks in the r-GO during the thermal treatment at various temperatures within the films.

Synthesis and Properties of Polyimide Composites Containing Graphene Oxide Via In-Situ Polymerization

  • Zhu, Jiadeng;Lee, Cheol-Ho;Joh, Han-Ik;Kim, Hwan Chul;Lee, Sungho
    • Carbon letters
    • /
    • 제13권4호
    • /
    • pp.230-235
    • /
    • 2012
  • In this study, reduced graphene oxide/polyimide (r-GO/PI) composite films, which showed significant enhancement in their electrical conductivity, were successfully fabricated. GO was prepared from graphite using a modified Hummers method. The GO was used as a nanofiller material for the preparation of r-GO/PI composites by in-situ polymerization. An addition of 20 wt% of GO led to a significant decrease in the volume resistivity of composite films by less than nine orders of magnitude compared to that of pure PI films due to the electrical percolation networks of reduced GO created during imidization within the films. A tensile test indicated that the Young's modulus of the r-GO/PI composite film containing 20 wt% GO increased drastically from 2.3 GPa to 4.4 GPa, which was an improvement of approximately 84% compared to that of pure PI film. In addition, the corresponding tensile strength was found to have decreased only by 12%, from 113 MPa to 99 MPa.

Synthesis and Characterization of Graphene Counter Electrode By Electrophoretic Deposition for Dye-Sensitized Solar Cells

  • 최윤수;공재석;최현광;전민현
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.160-160
    • /
    • 2013
  • Dye-sensitized solar cells (DSSCs) have attracted much attention because of their moderate light-to-electricity conversion efficiency, easy fabrication, and low cost. At present, platinum (Pt) is used as a counter electrode in DSSCs. However, it is found that Pt dissolves in iodide electrolyte solutions and creates chemical compound such as PtI4 and H2PtI6. Carbon based materials are one of candidates for a counter electrode of DSSCs. We prepare two types of graphite oxides by different chemical treatments; original graphite oxide, hydrazine treated graphite oxide. Each graphite oxide and magnesium nitrate dispersed in deionized water are prepared as solutions for electrophoretic deposition (EPD). Each graphite oxide electrode is deposited on fluorine-doped tin oxide (FTO) substrate by EPD method. Structural and electrochemical properties of each electrode are investigated by field-emission scanning electron microscopy and electrochemical impedance spectroscopy, respectively.

  • PDF

열플라즈마를 이용한 탄소 나노 물질의 합성 및 특성에 관한 연구 (A Study on the Synthesis and Characteristics of Carbon Nanomaterials by Thermal Plasma)

  • 강성표;김태희
    • 한국표면공학회지
    • /
    • 제57권3호
    • /
    • pp.155-164
    • /
    • 2024
  • Physical properties of carbon nanomaterials are dependent on their nanostructures and they are modified by diverse synthesis methods. Among them, thermal plasma method stands out for synthesizing carbon nanomaterials by controlling chemical and physical reactions through various design and operating conditions such as plasma torch type, plasma gas composition, power capacity, raw material injection rate, quenching rate, kinds of precursors, and so on. The method enables the production of carbon nanomaterials with various nanostructures and characteristics. The high-energy integration at high-temperature region thermal plasma to the precursor is possible to completely vaporize precursors, and the vaporized materials are rapidly condensed to the nanomaterials due to the rapid quenching rate by sharp temperature gradient. The synthesized nanomaterials are averagely in several nanometers to 100 nm scale. Especially, the thermal plasma was validated to synthesize low-dimensional carbon nanomaterials, carbon nanotubes and graphene, which hold immense promise for future applications.

Facile Synthesis and Characterization of GO/ZnS Nanocomposite with Highly Efficient Photocatalytic Activity

  • Li, Lingwei;Xue, Shaolin;Xie, Pei;Feng, Hange;Hou, Xin;Liu, Zhiyuan;Xu, Zhuoting;Zou, Rujia
    • Electronic Materials Letters
    • /
    • 제14권6호
    • /
    • pp.739-748
    • /
    • 2018
  • ZnS nanowalls, microspheres and rice-shaped nanoparticles have been successfully grown on graphene oxide (GO) sheets by the hydrothermal method. The morphologies, structures, chemical compositions and optical properties of the as-synthesized GO/ZnS have been characterized by X-ray power diffraction, energy dispersive spectrometer, scanning electron microscope, Raman spectra, photoluminescence spectroscopy and ultraviolet-visible absorption spectroscopy. It was found that the concentration of CTAB and the reaction temperature were important in the formation of GO/ZnS microstructures. The photocatalytic activity of the as-synthesized GO/ZnS was investigated through the photocatalytic degradation of textile dyeing waste. Results showed that the catalytic activity of the GO/ZnS porous spheres to methyl orange and methylene blue is higher than those of other samples. The degradation rates of methyl orange and methylene blue by porous spheres in 50 min were 97.6 and 97.1%, respectively. This is mainly attributed to the large specific surface area of GO/ZnS porous spheres and high separation efficiency between photogenerated electron and hole pairs.