Browse > Article
http://dx.doi.org/10.6117/kmeps.2020.27.4.025

Synthesis of Reduced Graphene-metal Hybrid Materials via Ion-exchange Method and its Characterization  

Park, Aeri (Department of Advanced Chemicals & Engineering, Graduate School Chonnam National University)
Kim, Sumin (Department of Advanced Chemicals & Engineering, Graduate School Chonnam National University)
Kim, Hyun (Department of Advanced Chemicals & Engineering, Graduate School Chonnam National University)
Han, Jong Hun (School of Chemical Engineering, Chonnam National University)
Publication Information
Journal of the Microelectronics and Packaging Society / v.27, no.4, 2020 , pp. 25-37 More about this Journal
Abstract
In this study, hybridization of graphene oxide and metal was carried out by the functional groups containing oxygen and thermal treatment for reduction in order to enhance the electrical conductivity and magnetic properties of graphene materials. Graphene-metal hybrid materials were synthesized using the oxygen-containing functional groups (-OH, -COOH and so on) on the surface of graphene oxide by replacing them with metal ions via ion exchange method as well as thermal reduction. The metals used in this study were Fe, Ag, Ni, Zn, and Fe/Ag, and it was confirmed that metal particles of uniform size were well dispersed on the graphene surface through SEM, TEM, and EDS. All of the metal particles on the graphene surface had an oxide-crystalline structure. To check the electrical properties, sheet resistance of the rGO-metal hybrid sample was measured on the PET film made by the dip-coating, and the specific resistance was calculated by measuring the thickness of the specimen through SEM. As a result, the specific resistance was in the range of 2.14×10-5 and 3.5×10-3 ohm/cm.
Keywords
graphene oxide; metal; hybrid; reduced graphene; resistivity;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 J. Li and C. Y. Liu, "Ag/Graphene Heterostructures: Synthesis, Characterization and Optical Properties", Eur. J. Inorg. Chem., 2010(8), 1244 (2010).   DOI
2 A. Antony, K. V. Murali, R. Manoj, and M. K. Jayaraj, "The effect of the pH value on the growth and properties of chemical-bath-deposited ZnS thin films", Mater. Chem. Phys., 90(1), 106 (2005).   DOI
3 S. Guo, G. Zhang, Y. Guo, and J. C. Yu, "Graphene oxide-Fe2O3 hybrid material as highly efficient heterogeneous catalyst for degradation of organic contaminants", Carbon, 60, 437 (2013).   DOI
4 W. Wei, X. Mao, L. A. Ortiz, and D. R. Sadoway, "Oriented silver oxidenanostructures synthesized through a template-free electrochemical route", J. Mater. Chem., 21(2), 432 (2011).   DOI
5 G. I. N. Waterhouse, J. B. Metson, and G. A. Bowmaker, "Synthesis, vibrational spectra and thermal stability of Ag3O4 and related Ag7O8X salts (X= NO3-, ClO4-, HSO4-)", Polyhedron, 26(13), 3310 (2007).   DOI
6 P. Prieto, V. Nistor, K. Nouneh, M. Oyama, M. Abd-Lefdil, and R. Diaz, "XPS study of silver, nickel and bimetallic silver-nickel nanoparticles prepared by seed-mediated growth", Appl. Surf. Sci., 258(22), 8807 (2012).   DOI
7 M. C. Biesinger, B. P. Payne, L. W. M. Lau, A. Gerson, and R. St. C. Smart, "X?ray photoelectron spectroscopic chemical state quantification of mixed nickel metal, oxide and hydroxide systems", Surf. Interface Anal., 41(4), 324 (2009).   DOI
8 H. W. Nesbitt, D. Legrand, and G. M. Bancroft, "Interpretation of Ni2p XPS spectra of Ni conductors and Ni insulators", Phys. Chem. Miner., 27, 357 (2000).   DOI
9 N. Li, S. S. Dong, W. Y. Lv, S. Q. Huang, H. X. Chen, Y. Y. Yao, and W. X. Chen, "Enhanced electrocatalytic oxidation of dyes in aqueous solution using cobalt phthalocyanine modified activated carbon fiber anode", Science China Chemistry, 56, 1757 (2013).   DOI
10 G. Carraro, D. Barreca, A. Gasparotto, and C. Maccato, "Ag and Pt Particles Sputtered on β-Fe2O3: An XPS Investigation", Surface Science Spectra, 19(1), 1 (2012).   DOI
11 J. S. Bunch, A. M. van der Zande, S. S. Verbridge, I. W. Frank, D. M. Tanenbaum, J. M. Parpia, H. G. Craighead, and P. L. McEuen, "Electromechanical Resonators from Graphene Sheets", Science, 315(5811), 490 (2007).   DOI
12 S. J. Lee and T. L. Lee, "A Study on the Effects of Electroencephalogram of Blocking Electromagnetic Wave Materials by useing the Nano Silver (in Kor.)", J. Kor. Soc. Cloth. Ind., 6(6), 810 (2004).
13 S. Yasufuku, "Application of aramid film to electrical and electronic uses in Japan", IEEE Electrical insulation Magazine, 11(6), 27 (1995).   DOI
14 A. Ahlbom, U. Bergqvist, J. H. Bernhardt, J. P. Cesarini, L. A. Court, M. Grandolfo, M. Hietanen, A. F. McKinlay, M. H. Repacholi, D. H. Sliney, J. A J Stolwijk, M. L. Swicord, L. D. Szabo, M. Taki, T. S. Tenforde, H. P. Jammet, and R. Matthes, "Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz)", Health Physics, 74(4), 494 (1998).
15 J. R. Potts, D. R. Dreyer, C. W. Bielawski, and R. S. Ruoff, "Graphene-based polymer nanocomposites", Polymer, 52(1), 5 (2011).   DOI
16 A. K. Geim and K. S. Novoselov, "The rise of graphene", Nat. Mater., 6, 183 (2007).   DOI
17 S. Wang, P. K. Ang, Z. Q. Wang, A. L. L. Tang, J. T. L. Thong, and K. P. Loh, "High Mobility, Printable, and Solution-Processed Graphene Electronics", Nano Lett., 10(1), 92 (2010).   DOI
18 T. W. Lee and H. H. Park, "The Effect of Graphene on the Electrical Properties of a Stretchable Carbon Electrode (in Kor.)", J. Microelectron. Packag. Soc., 21(4), 77 (2014).   DOI
19 C. G. Liu, Z. N. Yu, D. Neff, A. Zhamu, and B. Z. Jang, "Graphene-Based Supercapacitor with an Ultrahigh Energy Density", Nano Lett., 10(12), 4863 (2010).   DOI
20 J. L. Xia, F. Chen, P. Wiktor, D. K. Ferry, and N. J. Tao, "Effect of Top Dielectric Medium on Gate Capacitance of Graphene Field Effect Transistors: Implications in Mobility Measurements and Sensor Applications", Nano Lett., 10(12), 5060 (2010).   DOI
21 S. T. Lee, C. H. Kim, and H. Y. Kim, "High Thermal Conductivity h-BN/PVA Composite Films for High Power Electronic Packaging Substrate (in Kor.)", J. Microelectron. Packag. Soc., 25(4), 95 (2018).   DOI
22 S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, "Graphene-based composite materials", Nature, 442, 282 (2006).   DOI
23 H. Bai, C. Li, and G. Q. Shi, "Functional Composite Materials Based on Chemically Converted Graphene", Adv. Mater., 23(9), 1089 (2011).   DOI
24 S. Park and R. S. Ruoff, "Chemical methods for the production of graphenes", Nat. Nanotechnol., 4, 217 (2009).   DOI
25 T. Wei, G. L. Luo, Z. J. Fan, C. Zheng, J. Yan, C. Z. Yao, W. F. Li, and C. Zhang, "Preparation of graphene nanosheet/polymer composites using in situ reduction-extractive dispersion", Carbon, 47(9), 2296 (2009).   DOI
26 S. Stankovich, R. D. Piner, X. Q. Chen, N. Q. Wu, S. T. Nguyen, and R. S. Ruoff, "Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate)", J. Mater. Chem., 16, 155 (2006).   DOI
27 T. Wei, G. L. Luo, Z. J. Fan, C. Zheng, J. Yan, C. Z. Yao, W. F. Li, and C. Zhang, "Preparation of graphene nanosheet/polymer composites using in situ reduction-extractive dispersion", Carbon, 47(9), 2296 (2009).   DOI
28 Y. C. Si and E. T. Samulski, "Exfoliated Graphene Separated by Platinum Nanoparticles", Chem. Mater., 20(21), 6792 (2008).   DOI
29 C. Xu, X. Wang and J. W. Zhu, "Graphene-Metal Particle Nanocomposites", J. Phys. Chem. C., 112(50), 19841 (2008).   DOI
30 J. Lu, I. Do, L. T. Drzal, R. M. Worden, and I. Lee, "Nanometal-Decorated Exfoliated Graphite Nanoplatelet Based Glucose Biosensors with High Sensitivity and Fast Response", Acs Nano, 2(9), 1825 (2008).   DOI
31 A. P. Yu, P. Ramesh, M. E. Itkis, E. Bekyarova, and R. C. Haddon, "Graphite Nanoplatelet-Epoxy Composite Thermal Interface Materials", J. Phys. Chem. C., 111(21), 7565 (2007).   DOI