DOI QR코드

DOI QR Code

A Study on Synthesis of Polyurethane/Functionalized Graphene Nanocomposites by In-situ Intercalation Method

In-situ 법에 의한 폴리우레탄/기능화 된 그래핀 나노복합체의 합성에 관한 연구

  • Hwang, Soo-Ok (School of Energy.Materials.Chemical Engineering, Korea University of Technology and Education) ;
  • Lee, Byung-Hwan (School of Energy.Materials.Chemical Engineering, Korea University of Technology and Education) ;
  • Cho, Ur-Ryong (School of Energy.Materials.Chemical Engineering, Korea University of Technology and Education)
  • 황수옥 (한국기술교육대학교 에너지.신소재.화학공학부) ;
  • 이병환 (한국기술교육대학교 에너지.신소재.화학공학부) ;
  • 조을룡 (한국기술교육대학교 에너지.신소재.화학공학부)
  • Received : 2012.07.11
  • Accepted : 2012.07.23
  • Published : 2012.09.30

Abstract

Graphene oxide was synthesized from natural graphite, and its surface was modified using diisocyanatodicyclohexylmethane( $H_{12}MDI$). Isocyanate-graphene sheet(i-RGO) was obtained by reduction of surface modified GO. To select nanofiller having good dispersion with polyurethane, GO, i-RGO, natural graphite and thermal reduced graphite were analyzed, and then i-RGO was selected as a suitable nanofiller. PU/i-RGO nanocomposite was synthesized with various i-RGO contents to estimate effect of reinforcement on nanocomposite. Thermal stability, hardness, contact angle were increased with i-RGO contents due to i-RGO characteristic and crosslink bridge effect. But, tensile strength and elongation were decreased at i-RGO contents more than the 4 wt%. This phenomenon was interpreted by the excess formation of crosslink bridge.

천연 흑연으로부터 Graphene oxide(GO)를 합성한 후 diisocyanatodicyclohexylmethane($H_{12}MDI$)를 이용하여 GO의 표면을 기능화하였고, hydrazine monohydrate에 의한 환원을 통해 isocyanate-graphene sheet(i-RGO)를 얻었다. 폴리우레탄과 적합한 나노복합체를 형성하기 위하여 GO, i-RGO, 천연흑연 및 열적환원된 graphene을 서로 비교분석하였으며, i-RGO가 가장 적합한 나노충전제로 선정되었다. 선정된 i-RGO의 함량에 따른 폴리우레탄의 물성 향상을 확인하기 위하여 충전제의 함량을 다르게 하여 PU/i-RGO 나노복합체를 합성하였다. 물성 평가에서, i-RGO의 함량이 증가할수록 열적 안정성, 경도 및 접촉각(발수력)이 향상되었는데, 이는 i-RGO의 물성 특성 및 가교점 작용에 기인한 것으로 판단되었다. 다만, 인장강도와 신장률의 경우 함량이 4 wt%를 넘어갈 경우 오히려 물성이 감소하는 것을 확인할 수 있었는데, 이는 과량의 가교점 형성이 원인인 것으로 해석되었다.

Keywords

References

  1. Yu M F, Lourie O, Moloni K, Kelly T, and Ruoff R S, "Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load", Science, 287, 637 (2000). https://doi.org/10.1126/science.287.5453.637
  2. Zhang Y, Tan Y W, Stormer H L, and Kim P, "Experimental observation of the quantum hall effect and Berry's phase in graphene", Nature, 438, 201(2005). https://doi.org/10.1038/nature04235
  3. Hirata M, Gotou T, Horiuchi S, Fujiwara M, and Ohba M, "Thin-film particles of graphite oxide 1: High-yield synthesis and flexibility of the particles", Carbon, 42, 2929 (2004).
  4. Berger C, "Ultrathin epitacial graphite : two-dimensional electron gas properties and a route toward graphene-based nanoelectronics", J. Phys. Chem, B, 108, 19912 (2004). https://doi.org/10.1021/jp040650f
  5. Dieterich D, Grigat E, and Hahn W, "Polyurethane Handbook", ed. by Oertel G, pp. 31-38, Hanser, Munich, 1985.
  6. Graessley W W, "Physical Properties of Polymers", ed. by Mark J et al., pp. 97, Amer. Chem. Soc., Washington (1984).
  7. Bueche F, Physical Properties of Polymers, pp. 13, Krieger, New York, 1979.
  8. Hummers. W, Offeman. R, "Preparation of graphitic oxide", J. Am. Chem. Soc., 80, 1339 (1981).
  9. C. Hepburn, "Polyurethane Elastomer", Elsevier, London, 1982.
  10. 김진흥, 대한화학회 여천진회 제 10회 석유화학강좌, 제8 장 TPU의 응용과 동향 (2000).
  11. 이정삼, "Molecular Design, Synthesis, and Properties of High performance Polyurethanes", 부산대학교, 박사학위논문 (1991)
  12. Kim B K, Yang J S, Yoo S M, and Lee J S, "Waterborne Polyurethanes Containing Ionic Groups in Soft Segments", Colloid Polym. SCi. 281, 61 (2003).
  13. Blackwell J and Gardner K H "Structure of the Hard Segments in Polyurethane Elastomers", Polymer, 20, 13 (1979). https://doi.org/10.1016/0032-3861(79)90035-1
  14. Aitken R R and Jeffs G M F, "Thermoplastic Polyurethane Elastomers Based on Aliphatic Diisocyanates Thermal Transitions", Polymer, 18, 197 (1977). https://doi.org/10.1016/0032-3861(77)90039-8
  15. Hepburn C, "Polyurethane Elastomer", pp. 51, Elsevier Science, New York 1992.
  16. Ma J, Zhang S, and Qi Z, "Synthesis and Characterization of Elastomeric Polyurethane/Clay Nanocomposites", J, Appl, Polym. Sci., 82, 1444 (2001). https://doi.org/10.1002/app.1982
  17. Yao K J, Song M, Hourston D J, and Luo D Z, "Polymer/Layered Clay Nanocompo-sites: 2 Polyurethane Nanocomposites", Polymer, 43, 1017 (2002). https://doi.org/10.1016/S0032-3861(01)00650-4
  18. Xiong J, Liu Y, Yang X, and Wang X, "Thermal and Mechanical Properties of Polyurethane/Montmorillonite Nanocomposites Based on Novel Reactive Modifeder", Polymer Degradation and Stability, 86, 549 (2004). https://doi.org/10.1016/j.polymdegradstab.2004.07.001
  19. Petrovic Z S, Javni I, Waddon A, and Banhegyi G, "Structure and Properties of Polyurethane-Silica Nanocomposites", J. Appl. Polym. Sci., 76, 133 (2000). https://doi.org/10.1002/(SICI)1097-4628(20000411)76:2<133::AID-APP3>3.0.CO;2-K
  20. Pattanayak A and Jana S C, "Synthesis of Thermoplastic Polyurethane Nanocomposites of Reactive Nanoclay by Bulk Polymerization Methods", Polymer, 46, 3275 (2005). https://doi.org/10.1016/j.polymer.2005.02.081
  21. Pattanayak A and Jana S C, "Thermoplastic Polyurethane Nanocomposites of Reactive Silicate Clays : Effects of Soft Segment on Properties", Polymer, 46, 5183 (2005). https://doi.org/10.1016/j.polymer.2005.04.035
  22. Rehab A and Salahuddin N, "Nanocompo sites Materials Based on Polyurethane Intercalaition to Montmollonite Clay", Materials Science and Engineering, 399, 368 (2005). https://doi.org/10.1016/j.msea.2005.04.019
  23. Song L, Tang Y, Zhang R, Chen Z, and Fan W, "Study on the Properties of Flame Retardant Polyurethane/Organoclay Nanocomposite", Polymer Degradation and Stability, 87, 111 (2005). https://doi.org/10.1016/j.polymdegradstab.2004.07.012
  24. Usuki A, Kawasumi M, Kojima Y, Fukushima Y, Okada A,Kurauchi T, and Kamigato O, "Synthesis of Nylon-6-Clay Hybrid by Montmorillonite Intercalated with 1-Caprolactam", J. Mater. Res., 8, 1179 (1993). https://doi.org/10.1557/JMR.1993.1179

Cited by

  1. A study of graphene oxide-reinforced rubber nanocomposite vol.131, pp.16, 2014, https://doi.org/10.1002/app.40640
  2. An effective one-pot method for preparing covalently bonded nanocomposite soft magnetic beadlike microgels and their evaluation as an adsorbent for the removal of toxic heavy metals from aqueous solution pp.1369-9261, 2018, https://doi.org/10.1039/C8NJ04101F