DOI QR코드

DOI QR Code

Synthesis of Reduced Graphene-metal Hybrid Materials via Ion-exchange Method and its Characterization

이온교환법에 의한 환원 그래핀-금속 하이브리드 소재의 합성 및 특성

  • Park, Aeri (Department of Advanced Chemicals & Engineering, Graduate School Chonnam National University) ;
  • Kim, Sumin (Department of Advanced Chemicals & Engineering, Graduate School Chonnam National University) ;
  • Kim, Hyun (Department of Advanced Chemicals & Engineering, Graduate School Chonnam National University) ;
  • Han, Jong Hun (School of Chemical Engineering, Chonnam National University)
  • 박애리 (전남대학교 일반대학원 신화학소재공학과) ;
  • 김수민 (전남대학교 일반대학원 신화학소재공학과) ;
  • 김현 (전남대학교 일반대학원 신화학소재공학과) ;
  • 한종훈 (전남대학교 공과대학 화학공학부 및 광전자융합연구소)
  • Received : 2020.11.16
  • Accepted : 2020.12.16
  • Published : 2020.12.30

Abstract

In this study, hybridization of graphene oxide and metal was carried out by the functional groups containing oxygen and thermal treatment for reduction in order to enhance the electrical conductivity and magnetic properties of graphene materials. Graphene-metal hybrid materials were synthesized using the oxygen-containing functional groups (-OH, -COOH and so on) on the surface of graphene oxide by replacing them with metal ions via ion exchange method as well as thermal reduction. The metals used in this study were Fe, Ag, Ni, Zn, and Fe/Ag, and it was confirmed that metal particles of uniform size were well dispersed on the graphene surface through SEM, TEM, and EDS. All of the metal particles on the graphene surface had an oxide-crystalline structure. To check the electrical properties, sheet resistance of the rGO-metal hybrid sample was measured on the PET film made by the dip-coating, and the specific resistance was calculated by measuring the thickness of the specimen through SEM. As a result, the specific resistance was in the range of 2.14×10-5 and 3.5×10-3 ohm/cm.

본 연구에서는 그래핀 소재의 전기전도성 및 자기적 특성을 향상시키기 위해 산화그래핀 표면상의 산소를 포함한 기능기와 열처리 환원공정을 이용하여 환원그래핀과 금속소재를 하리브리드화 하였다. 산화 그래핀 표면의 -OH, -COOH 등의 산소 포함 기능기들을 열처리 환원시킴과 동시에 금속이온을 기능기와의 이온교환법에 의해 치환 합성하는 연구를 진행하였다. 하이브리드 소재 합성에 사용된 금속은 Fe, Ag, Ni, Zn, Fe/Ag이며 SEM, TEM 및 EDS를 통해 환원 그래핀 표면 위에 균일한 크기의 금속 입자가 비교적 구형 잘 분산되었음을 확인하였다. 그래핀 표면상의 금속입자들은 모두 산화물 형태의 구조를 가지고 있었다. 하이브리드 소재의 전기적 특성을 확인하기 위해 rGO-metal hybrid 시료를 PET film에 dip-coating 방법으로 후막 필름을 형성시킨 후 면저항을 측정하였고, SEM을 통해 시편의 두께를 측정하여 비저항을 계산한 결과, 비저항의 범위는 2.14×10-5 ~ 3.5×10-3 ohm/cm범위에 있음을 확인하였다.

Keywords

References

  1. S. J. Lee and T. L. Lee, "A Study on the Effects of Electroencephalogram of Blocking Electromagnetic Wave Materials by useing the Nano Silver (in Kor.)", J. Kor. Soc. Cloth. Ind., 6(6), 810 (2004).
  2. S. Yasufuku, "Application of aramid film to electrical and electronic uses in Japan", IEEE Electrical insulation Magazine, 11(6), 27 (1995). https://doi.org/10.1109/57.475906
  3. A. Ahlbom, U. Bergqvist, J. H. Bernhardt, J. P. Cesarini, L. A. Court, M. Grandolfo, M. Hietanen, A. F. McKinlay, M. H. Repacholi, D. H. Sliney, J. A J Stolwijk, M. L. Swicord, L. D. Szabo, M. Taki, T. S. Tenforde, H. P. Jammet, and R. Matthes, "Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz)", Health Physics, 74(4), 494 (1998).
  4. J. R. Potts, D. R. Dreyer, C. W. Bielawski, and R. S. Ruoff, "Graphene-based polymer nanocomposites", Polymer, 52(1), 5 (2011). https://doi.org/10.1016/j.polymer.2010.11.042
  5. A. K. Geim and K. S. Novoselov, "The rise of graphene", Nat. Mater., 6, 183 (2007). https://doi.org/10.1038/nmat1849
  6. S. Wang, P. K. Ang, Z. Q. Wang, A. L. L. Tang, J. T. L. Thong, and K. P. Loh, "High Mobility, Printable, and Solution-Processed Graphene Electronics", Nano Lett., 10(1), 92 (2010). https://doi.org/10.1021/nl9028736
  7. T. W. Lee and H. H. Park, "The Effect of Graphene on the Electrical Properties of a Stretchable Carbon Electrode (in Kor.)", J. Microelectron. Packag. Soc., 21(4), 77 (2014). https://doi.org/10.6117/kmeps.2014.21.4.077
  8. J. S. Bunch, A. M. van der Zande, S. S. Verbridge, I. W. Frank, D. M. Tanenbaum, J. M. Parpia, H. G. Craighead, and P. L. McEuen, "Electromechanical Resonators from Graphene Sheets", Science, 315(5811), 490 (2007). https://doi.org/10.1126/science.1136836
  9. C. G. Liu, Z. N. Yu, D. Neff, A. Zhamu, and B. Z. Jang, "Graphene-Based Supercapacitor with an Ultrahigh Energy Density", Nano Lett., 10(12), 4863 (2010). https://doi.org/10.1021/nl102661q
  10. J. L. Xia, F. Chen, P. Wiktor, D. K. Ferry, and N. J. Tao, "Effect of Top Dielectric Medium on Gate Capacitance of Graphene Field Effect Transistors: Implications in Mobility Measurements and Sensor Applications", Nano Lett., 10(12), 5060 (2010). https://doi.org/10.1021/nl103306a
  11. S. T. Lee, C. H. Kim, and H. Y. Kim, "High Thermal Conductivity h-BN/PVA Composite Films for High Power Electronic Packaging Substrate (in Kor.)", J. Microelectron. Packag. Soc., 25(4), 95 (2018). https://doi.org/10.6117/KMEPS.2018.25.4.095
  12. H. Bai, C. Li, and G. Q. Shi, "Functional Composite Materials Based on Chemically Converted Graphene", Adv. Mater., 23(9), 1089 (2011). https://doi.org/10.1002/adma.201003753
  13. S. Park and R. S. Ruoff, "Chemical methods for the production of graphenes", Nat. Nanotechnol., 4, 217 (2009). https://doi.org/10.1038/nnano.2009.58
  14. T. Wei, G. L. Luo, Z. J. Fan, C. Zheng, J. Yan, C. Z. Yao, W. F. Li, and C. Zhang, "Preparation of graphene nanosheet/polymer composites using in situ reduction-extractive dispersion", Carbon, 47(9), 2296 (2009). https://doi.org/10.1016/j.carbon.2009.04.030
  15. S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, "Graphene-based composite materials", Nature, 442, 282 (2006). https://doi.org/10.1038/nature04969
  16. S. Stankovich, R. D. Piner, X. Q. Chen, N. Q. Wu, S. T. Nguyen, and R. S. Ruoff, "Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate)", J. Mater. Chem., 16, 155 (2006). https://doi.org/10.1039/b512799h
  17. T. Wei, G. L. Luo, Z. J. Fan, C. Zheng, J. Yan, C. Z. Yao, W. F. Li, and C. Zhang, "Preparation of graphene nanosheet/polymer composites using in situ reduction-extractive dispersion", Carbon, 47(9), 2296 (2009). https://doi.org/10.1016/j.carbon.2009.04.030
  18. C. Xu, X. Wang and J. W. Zhu, "Graphene-Metal Particle Nanocomposites", J. Phys. Chem. C., 112(50), 19841 (2008). https://doi.org/10.1021/jp807989b
  19. J. Lu, I. Do, L. T. Drzal, R. M. Worden, and I. Lee, "Nanometal-Decorated Exfoliated Graphite Nanoplatelet Based Glucose Biosensors with High Sensitivity and Fast Response", Acs Nano, 2(9), 1825 (2008). https://doi.org/10.1021/nn800244k
  20. Y. C. Si and E. T. Samulski, "Exfoliated Graphene Separated by Platinum Nanoparticles", Chem. Mater., 20(21), 6792 (2008). https://doi.org/10.1021/cm801356a
  21. A. P. Yu, P. Ramesh, M. E. Itkis, E. Bekyarova, and R. C. Haddon, "Graphite Nanoplatelet-Epoxy Composite Thermal Interface Materials", J. Phys. Chem. C., 111(21), 7565 (2007). https://doi.org/10.1021/jp071761s
  22. J. Li and C. Y. Liu, "Ag/Graphene Heterostructures: Synthesis, Characterization and Optical Properties", Eur. J. Inorg. Chem., 2010(8), 1244 (2010). https://doi.org/10.1002/ejic.200901048
  23. A. Antony, K. V. Murali, R. Manoj, and M. K. Jayaraj, "The effect of the pH value on the growth and properties of chemical-bath-deposited ZnS thin films", Mater. Chem. Phys., 90(1), 106 (2005). https://doi.org/10.1016/j.matchemphys.2004.10.017
  24. S. Guo, G. Zhang, Y. Guo, and J. C. Yu, "Graphene oxide-Fe2O3 hybrid material as highly efficient heterogeneous catalyst for degradation of organic contaminants", Carbon, 60, 437 (2013). https://doi.org/10.1016/j.carbon.2013.04.058
  25. W. Wei, X. Mao, L. A. Ortiz, and D. R. Sadoway, "Oriented silver oxidenanostructures synthesized through a template-free electrochemical route", J. Mater. Chem., 21(2), 432 (2011). https://doi.org/10.1039/c0jm02214d
  26. G. I. N. Waterhouse, J. B. Metson, and G. A. Bowmaker, "Synthesis, vibrational spectra and thermal stability of Ag3O4 and related Ag7O8X salts (X= NO3-, ClO4-, HSO4-)", Polyhedron, 26(13), 3310 (2007). https://doi.org/10.1016/j.poly.2007.03.006
  27. P. Prieto, V. Nistor, K. Nouneh, M. Oyama, M. Abd-Lefdil, and R. Diaz, "XPS study of silver, nickel and bimetallic silver-nickel nanoparticles prepared by seed-mediated growth", Appl. Surf. Sci., 258(22), 8807 (2012). https://doi.org/10.1016/j.apsusc.2012.05.095
  28. M. C. Biesinger, B. P. Payne, L. W. M. Lau, A. Gerson, and R. St. C. Smart, "X?ray photoelectron spectroscopic chemical state quantification of mixed nickel metal, oxide and hydroxide systems", Surf. Interface Anal., 41(4), 324 (2009). https://doi.org/10.1002/sia.3026
  29. H. W. Nesbitt, D. Legrand, and G. M. Bancroft, "Interpretation of Ni2p XPS spectra of Ni conductors and Ni insulators", Phys. Chem. Miner., 27, 357 (2000). https://doi.org/10.1007/s002690050265
  30. N. Li, S. S. Dong, W. Y. Lv, S. Q. Huang, H. X. Chen, Y. Y. Yao, and W. X. Chen, "Enhanced electrocatalytic oxidation of dyes in aqueous solution using cobalt phthalocyanine modified activated carbon fiber anode", Science China Chemistry, 56, 1757 (2013). https://doi.org/10.1007/s11426-013-4942-5
  31. G. Carraro, D. Barreca, A. Gasparotto, and C. Maccato, "Ag and Pt Particles Sputtered on β-Fe2O3: An XPS Investigation", Surface Science Spectra, 19(1), 1 (2012). https://doi.org/10.1116/11.20120101