• 제목/요약/키워드: synchronous state

검색결과 411건 처리시간 0.031초

An Improved Stationary Frame-based Digital Current Control Scheme for a PM Synchronous Motor

  • Kim Kyeong-Hwa;Youn Myung-Joong
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 Proceedings ICPE 01 2001 International Conference on Power Electronics
    • /
    • pp.174-178
    • /
    • 2001
  • An improved stationary frame-based digital current control technique for a permanent magnet (PM) synchronous motor is presented. Generally, the stationary frame current controller is known to provide the advantage of a simple implementation. However, there are some unavoidable limitations such as a steady-state error and a phase delay in the steady-state. On the other hand, in the synchronous frame current regulator, the regulated currents are dc quantities and a zero steady-state error can be obtained through the integral control. However, the need to transform the signals between the stationary and synchronous frames makes the implementation of a synchronous frame regulator complex. Although the PI controller in the stationary frame gives a steady-state error and a phase delay, the control performance can be greatly improved by employing the exact decoupling control inputs for the back EMF, resulting in an ideal steady-state control characteristics irrespective of an operating condition as in the synchronous PI decoupling controller. However, its steady-state response may be degraded due to the inexact cancellation inputs under the parameter variations. To improve the control performance in the stationary frame, the disturbance is estimated using the time delay control. The proposed scheme is implemented on a PM synchronous motor using DSP TMS320C31 and the effectiveness is verified through the comparative simulations and experiments.

  • PDF

An Improved Stationary Frame-based Digital Current Control Scheme for a PM Synchronous Motor

  • Kim, Kyeong-Hwa;Young, Myung-Joong
    • Journal of Power Electronics
    • /
    • 제1권2호
    • /
    • pp.88-98
    • /
    • 2001
  • An improved stationary frame-based digital current control technique for a permanent magnet(PM) synchronous motor is presented. Generally, the stationary frame current controller is known to provide the advantage of a simple implementation. However, there are some unavoidable limitations such as a steady-state error and a phase delay in the steady-state. On the other hand, in the synchronous frame current regulator the regulated currents are dc quantities and a zero steady-state error can be obtained through the integral control. However, the need to transform the signals between the stationary and synchronous frames makes the implementation of a synchronous frame regulator complex. Although the PI controller in the stationary frame gives a steady-state error and a phase delay, the control performance can be greatly improved by employing the exact decoupling control inputs for the back EMF., resulting in an ideal steady-state control characteristics irrespective of an operating condition as in the synchronous PI decoupling controller. However, its steady-state response may be degraded due to the inexact cancellation inputs under the parameter variations. To improve the control performance in the stationary frame, the disturbance is estimated using the time delay control. The proposed scheme is implemented on a PM synchronous motor using DSP TMS320C31 and the effectiveness is verified through the comparative simulations and experiments.

  • PDF

단상 영구자석형 유도동기기의 정상상태 특성해석 (Steady-State Characteristic Analysis of Single-Phase Line-Start Permanent Magnet Synchronous Motor)

  • 강규홍;남혁;홍정표
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제52권2호
    • /
    • pp.53-60
    • /
    • 2003
  • This paper deals with steady-state analysis of a single-phase line-start permanent magnet synchronous motor. In order to analyze the steady-state characteristics, the asymmetric single-phase line-start synchronous motor is converted to the symmetric two-phase synchronous motor, that is, the asymmetric magnetic field is separated from the positive and the negative symmetric components using symmetrical-component theory. The analysis method of the synchronous motor on the d-q axis coordinates is used for the positive component and the equivalent circuit of the induction motor is applied for the negative component analysis. Moreover, d-q axis inductance considering current phase angle is applied to positive component analysis for precise characteristic analysis. In order to validate the proposed analysis method, the analysis results are compared with the experimental results.

Using Central Manifold Theorem in the Analysis of Master-Slave Synchronization Networks

  • Castilho, Jose-Roberto;Carlos Nehemy;Alves, Luiz-Henrique
    • Journal of Communications and Networks
    • /
    • 제6권3호
    • /
    • pp.197-202
    • /
    • 2004
  • This work presents a stability analysis of the synchronous state for one-way master-slave time distribution networks with single star topology. Using bifurcation theory, the dynamical behavior of second-order phase-locked loops employed to extract the synchronous state in each node is analyzed in function of the constitutive parameters. Two usual inputs, the step and the ramp phase perturbations, are supposed to appear in the master node and, in each case, the existence and the stability of the synchronous state are studied. For parameter combinations resulting in non-hyperbolic synchronous states the linear approximation does not provide any information, even about the local behavior of the system. In this case, the center manifold theorem permits the construction of an equivalent vector field representing the asymptotic behavior of the original system in a local neighborhood of these points. Thus, the local stability can be determined.

A Study on Counter Design using Sequential Systems based on Synchronous Techniques

  • Park, Chun-Myoung
    • Journal of information and communication convergence engineering
    • /
    • 제8권4호
    • /
    • pp.421-426
    • /
    • 2010
  • This paper presents a method of design the counter using sequential system based on synchronous techniques. For the design the counter, first of all, we derive switching algebras and their operations. Also, we obtain the next-state functions, flip-flop excitations and their input functions from the flip-flop. Then, we propose the algorithm which is a method of implementation of the synchronous sequential digital logic circuits. Finally, we apply proposed the sequential logic based on synchronous techniques to counter.

고장전류를 이용한 동기 발전기 보호 (Synchronous Generator Protection using Fault Currents)

  • 박철원;안준영;이상성;신명철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.399-401
    • /
    • 2006
  • This paper proposes a synchronous generator protection algorithm using Discrete Wavelet Transform for detection of fault currents. The proposed technique is implemented by using the C language and the Wavemenu of MATLAB Toolbox, and consists of normal state and internal fault state. The effectiveness of proposed method is demonstrated by MATLAB simulation package for synchronous generator, which collects the balanced and unbalanced fault currents through simulation.

  • PDF

Transient Characteristics and Physical Constraints of Grid-Tied Virtual Synchronous Machines

  • Yuan, Chang;Liu, Chang;Yang, Dan;Zhou, Ruibing;Tang, Niang
    • Journal of Power Electronics
    • /
    • 제18권4호
    • /
    • pp.1111-1126
    • /
    • 2018
  • In modern power systems, distributed generators (DGs) result in high stress on system frequency stability. Apart from the intermittent nature of DGs, most DGs do not contribute inertia or damping to systems. As a result, a new control method referred to as a virtual synchronous machine (VSM) has been proposed, which brought new characteristics to inverters such as synchronous machines (SM). DGs employing an energy storage system (ESS) provide inertia and damping through VSM control. Meanwhile, energy storage presents some physical constraints in the VSM implementation level. In this paper, a VSM mathematical model is built and analyzed. The dynamic responses of the output active power are presented when a step change in the frequency occurs. The influences of the inertia constant, damping factor and operating point on the ESS volume margins are investigated. In addition, physical constraints are proposed based on these analyses. The proposed physical constraints are simulated using PSCAD/EMTDC software and tested through RTDS experiment. Both simulation and RTDS test results verify the analysis.

A Novel Three-Phase Four-Wire Grid-Connected Synchronverter that Mimics Synchronous Generators

  • Tan, Qian;Lv, Zhipeng;Xu, Bei;Jiang, Wenqian;Ai, Xin;Zhong, Qingchang
    • Journal of Power Electronics
    • /
    • 제16권6호
    • /
    • pp.2221-2230
    • /
    • 2016
  • Voltage and frequency stability issues occur in existing centralized power system due to the high penetration of renewable energy sources, which decrease grid absorptive capacity of them. The grid-connected inverter that mimics synchronous generator characteristics with inertia characteristic is beneficial to electric power system stability. This paper proposed a novel three-phase four-wire grid-connected inverter with an independent neutral line module that mimics synchronous generators. A mathematical model of the synchronous generator and operation principles of the synchronverter are introduced. The main circuit and control parameters design procedures are also provided in detail. A 10 kW prototype is built and tested for further verification. The primary frequency modulation and primary voltage regulation characteristics of the synchronous generator are emulated and automatically adjusted by the proposed circuit, which helps to supports the grid.

A New Type of CPPM Machine with Stator Axial Magnetic Ring

  • Xie, Kun;Li, Xinhua;Ma, Jimin;Wu, Xiaojiang;Yi, Hong;Hu, Gangyi
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권3호
    • /
    • pp.1285-1293
    • /
    • 2018
  • This paper proposes a new type of consequent-pole permanent-magnet (CPPM) machine with stator axial magnetic ring that increases torque capability over a wide speed range and enhances efficiency for the built-in rare-earth permanent magnet synchronous machine used in new energy vehicles. The excitation winding of the CPPM hybrid excitation synchronous machine in the stator is replaced by ferrite magnetic ring to simplify the structure and manufacturing process of the machine. The basic structure and magnetic regulation principle of the proposed machine are introduced and compared with the traditional interior rare-earth permanent magnet synchronous machine and CPPM hybrid excitation synchronous machine. Finally, experimental results of a new type of CPPM synchronous motor prototype with axial magnetic ring are introduced in the paper.

A Study on the Detection of Asynchronous State of the Synchronous Generator

  • Choi, Hyung-Joo;Lee, Heung-Ho
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제2권4호
    • /
    • pp.405-412
    • /
    • 2013
  • This paper includes new protection concepts and practices to avoid mechanical damage of three-phase transformer by asynchronous operation of synchronous generator. this failure is often caused just after synchronous generator was connected to the grid because of a malfunction of the controller or misconnections of the synchronous devices. The results of the studies on the analyzing the phenomenon of asynchronous operation experienced in Korea and rapidly detecting asynchronous state are descrived.