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Using Central Manifold Theorem in the Analysis of
Master-Slave Synchronization Networks

José Roberto Castilho Piqueira, Carlos Nehemy Marmo, and Luiz Henrique Alves Monteiro

Abstract: This work presents a stability analysis of the synchronous
state for one-way master-slave time distribution networks with sin-
gle star topology.

Using bifurcation theory, the dynamical behavior of second-
order phase-locked loops employed to extract the synchronous
state in each node is analyzed in function of the constitutive pa-
rameters.

Two usual inputs, the step and the ramp phase perturbations,
are supposed to appear in the master node and, in each case, the
existence and the stability of the synchronous state are studied.

For parameter combinations resulting in non-hyperbolic syn-
chronous states the linear approximation does not provide any in-
formation, even about the local behavior of the system. In this case,
the center manifold theorem permits the construction of an equiv-
alent vector field representing the asymptotic behavior of the orig-
inal system in a local neighborhood of these points. Thus, the local
stability can be determined.

Index Terms: Bifurcation, master-slave, network, phase-locked
loops, single-star, synchronization, synchronous state.

I. INTRODUCTION

The main purpose of a time distributing system is to synchro-
nize the phase and the frequency of several oscillators spread
over a geographical area [1].

If the synchronization is obtained without the transmission of
control signals, the network is called plesiochronous. In this
case, each node of the network needs an accurate oscillator, in-
dividually aligned. The main advantage of this strategy is the
robustness to failures in the node clock circuits.

In order to obtain the same effect with cheaper networks we
can use the line signals to carry the clock basis and, in each node,
the phase and the frequency of a control signal are reconstructed.
This type of network is called synchronous.

If all the nodes give some contribution to the synchronization
frequency, the network is called mutually synchronized. If there
is any kind of priority on determining the synchronous state, the
network is called master-slave.

In a master-slave network, if the master oscillator control sig-
nal does not depend on the signals from other nodes, the network
is called one-way master-slave (OWMS). If the signal from the
master depends on the slave signals, the network is called two-
way master-slave (TWMS) [1].
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Fig. 1. OWMS single star.
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Fig. 2. OWMS single chain.

Our work is about OWMS topologies, i.e., with the control
signal transmitted in a single direction. The main oscillator,
called master, has its own time and frequency scales, not de-
pendent of the others, called slaves.

When the transmission of the control signal occurs directly
from the master to all slaves, the network is called single star
(Fig. 1).

‘When a slave can be controlled by the master or another slave,
the topology is called single chain (Fig. 2).

Both of them, OWMS single star and single chain, are easy
to implement, with low cost and acceptable reliability. So, they
appear in public telecommunication networks, in parallel and
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Fig. 3. The phase-locked loop.

distributed computation [2], in robotics {3], and many other en-
gineering applications [1], [4].

The maximum number of slaves can be calculated for a single
chain, in order to obtain a good performance of the clock extrac-
tion system, using analytical tools [5] but we are not considering
this problem here.

Here we consider the OWMS single star with the master as a
high quality atomic oscillator, and the slaves are composed by
second order phase-locked loops (PLLs).

PLLs are electronic circuits designed to extract the time sig-
nal from line signals. They were developed in 1932 by H. de
Bellescize and the first commercial application was on televi-
sion sets, in 1943 [6]. Nowadays, they are extensively used for
constructing clock synthesizers for computer and in communi-
cation applications [7].

In our study, we choose second-order PLLs because they can
present satisfactory transient response to step and ramp phase
inputs, and avoid periodic and chaotic attractors for the phase
and frequency errors.

If it is necessary to improve the transient response of the net-
works, it is usual to increase the PLL’s order. However, due
to the nonlinearity, self-sustained error oscillations [8]-[10] can
appear and, depending on the order; Arnold diffusion also ap-
pears [11]. These phenomena limit the lock-in range of the
nodes along the network.

A PLL is composed by three elements, connected in a closed
loop: A phase detector (PD), a low-pass filter (LPF), and a volt-
age controlled oscillator (VCO), as shown in Fig. 3.

The idea is to synchronize the signal generated by the VCO
and the external signal, making their phase difference a constant
value, or equivalently, their frequency difference equal to zero.
In this situation, we say that the node is in a synchronous state.

The existence and the stability of the synchronous state de-
pend on node and line parameters, and on the function that rep-
resents the changes of the master phase signal. Two types of
phase changing functions are considered here, step and ramp,
because they are usual in real applications.

We start presenting the differential equations representing the
slave node PLL dynamics for the OWMS single star networks.
The equations are of second-order, nonlinear, and autonomous.

The vector fields corresponding to these equations are studied
and the linear approximation around the equilibrium points cap-
tures the main aspects related to synchronous state stability. But,
for some practical combinations of parameters, a synchronous
state corresponding to an eigenvalue with zero real part (non
hyperbolic point) can be obtained and, consequently, the lin-
ear approximation is not sufficient to provide useful conclusions
about the synchronous state.

Then, we use the center manifold theorem, constructing an
equivalent vector field that reveals the asymptotic behavior of
the original system in the neighborhood of non-hyperbolic equi-
librium points [12], [13].

Bifurcation diagrams associate parameter space regions to dy-
namical behaviors of OWMS single-star networks. Such dia-
grams are presented here.

II. SECOND-ORDER PLL IN OWMS-SINGLE STAR

In the single star architecture, the slaves are directly con-
nected to the master and, then, the equations are of the same
type for all nodes.

The input and output signals in all nodes are considered to
have a periodic free-running term with central angular frequency
Wo.

The master signal v; (¢), with amplitude V; and phase ®1 is
transmitted from the master to the ith slave with a 7y; delay,
being the input of the PD for all slave PLLs and given by:

V1 (t - Tli) = V1 sin[CI)l(t — Tli)]

= Vlsin[wo(t—ni) +91(t—ﬁ,~)]. (1)
The VCO signal v;(t) of the th slave, with amplitude V; and
phase ®; is given by

vi(t) = Vicos[®i()]

=V, cosfwo(t) + 0:(t)], 2)

with ¢, expressing how the phase of the master depends on time
and 8;, the ith slave adjustable phase.

Neglecting the double-frequency terms [7], the PD output,
considered a signal multiplier, is expressed by:

Kn:WV; |
V() = =22 Gin[0y (¢ — 1) — 0: () — worse),  (3)
where K,, ; is the PD gain. .

The filter is considered to be a linear first-order lag [14] with

transfer function:

1

Fo) = ges71

“)
where the product RC means the filter time constant.

In order to have better transient responses higher order filters
can be considered. Here they are not being analyzed because
additional bifurcations appear, as shown in [15].

The phase of the VCO signal is controlled by the filter output
vc(t) according to:

0= Kiv.(t),

where K is the VCO gain.

Using (3) and (5) in the transfer function of the filter (4), we
have the dynamics of the phase of the VCO described by the
following ordinary nonlinear equation:

&)

0; +p1,i 0= pa,ifin i sin (01 (8 — 715) — 0:(t) — woT1s), (6)

KiKm,iV1Vi
where Hi,i = % and MH2i = ——nz—l'
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In order to formulate the problem, we have to define two types
of phase errors: The first, ¢;;, between the input and the VCO
signal of the ith node and the second, ¢1;, between the VCO
signal of the ith node and the master.

That is

@i (t) 01 (t — 113) — 0:(t) — woTis, N
(pu(t) = 6 (t) - 0, (t) (8)

If one replaces phase errors (7) and (8) and their derivatives
in (6), the dynamics is described by

@i (t) + K Py (t) + H 2 sin{pq; (t)]
=01 (t = 71:) + p1,s 61 (8 —T1a)s

9
O1i (t) + p1,i Pui () + Bz, Sin[%i(t)]
=0 (t) + pa,i 61 ().

A. Synchronous State Stability with Step Input

If the input phase is a step, we can write for each node ¢, and
considering ¢ > 7y;:
{ Bui () + pras Pia (£) + pipuz,i sinfepis (t)] = 0 (10)
P (t) + p1s Pua () + paapiz, sinfe ()] = 0.
In order to normalize the equations, we change the indepen-

dent variable ¢t by T = p,t. Using primes to indicate the
derivatives related to T, (10) becomes

015(T) + @15(T) + ps sinfpy(T)] = 0,
where p; = 'uz’i.
M1,

Choosing convenient state variables, a three dimensional sys-
tem equation describes the dynamics of the each slave node as

4 .
Ty = —T1 — MU SINT2

’

T1 = Py 1

T2 = Qiz = Ty = T3 (12)
7 7 .

T3 =@, Xy = —T3 — i SINTa.

Equation (12) has two equilibrium points: P; = (0,0,0) and

Pz = (O, —T, 0)

Calculating the eigenvalues associated to the linear approx-
imation in P, we obtain Xy = -1 and Jg3 =
—14 /1 -4y,

As us%lal, we define stable sub-space E* as the space spanned
by the eigenvectors corresponding to the eigenvalues with neg-
ative real parts, unstable sub-space E* as the space spanned by
the eigenvectors corresponding to the eigenvalues with positive
real parts and central sub-space (E°) as the space spanned by
the eigenvectors corresponding to the eigenvalues with zero real
parts {12], [13].

As whole state space is generated by the union of E°, E¥,
and E€, by observing all possible values that the parameter u;
can assume, the stability of P, is given by
s For p; > 0= dim(E®) = 3 = P, is asymptotically stable.
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e Forpy; < 0 = dim(E°) = 2,dim(E") =1 = P is
unstable.

e For yu; = 0= dim(E®) =2, dim(E°) = 1 = nothing can
be concluded from the linear approximation.

The changing in the qualitative behavior of the system (bifur-
cation) in u; = 0 implies that the application of center manifold
theorem is possible to study the dynamics restricted to E° [12],
[13].

So, we include in (12) p; as a new dependent variable.

Using the Jordan form and the Taylor expansion sin z3 &~ Z2
around z, = 0, with the set of eigenvectors as the base of the
state space, we have

U:I -1 0 0 vy —pi{~v1 + v3)
w |=| 0 -1 o0 ve [+ —ps(—v14ws) |,
vy 0 0 0 vg —pi(—v1 + v3)
and ,
u; = 0. (13)

The center manifold related to (13) can be represented by

WE(0) = { (v, v2, vs, ps) € R*/v1 = ha(z, ps),

V2 = hQ(an’i)7 U3 =T, h](OaO) =0,

Dh;(0,0), j=1,2}, (14

for « and p; sufficiently small, with h(z,p) : B¢ x R —

E* being a function expressing analytically the center manifold.

The conditions k;(0,0) = 0, Dh;(0,0), j = 1,2 imply that
the center manifold is tangent to E° at the equilibrium point.

Additionally, in order to satisfy the original differential equa-

tion, (14) needs to be according to

_Bh($7/1'1) - g(m, h(mvﬂz)aﬂl) = Oa (15)

where A is a ¢ X ¢ matrix having eigenvalues with zero real part,
Bisas x smafrix having eigenvalues with negative real part,
and f and g are the nonlinear terms to be studied.

The dynamics described by (13) does not depend on vy =
ho(z, 1), therefore, we need only to estimate vy = hy(z, i;),
using a polynomial approximation, according to Henry-Carr
theorem [12], [16], as following

hi(e, ) = aa® + by + oy (16)
Substituting (16) into (17) and using (13), then
hi(z, ps) = —paz. (a7

Replacing (17) into (13), the vector field, restricted to the cen-
ter manifold, can be represented by

{ Z', = —liT

/J/i - 0.
The construction of the bifurcation diagram corresponding to

(18) is shown in Fig. 4, indicating convergence to the equilib-

rium point for u; > 0 and divergence for p; < 0. As the param-
eter y; is the PLL gain normalized to the cut-off frequency of

(18)
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Fig. 4. Single star with step input: Bifurcation diagram.

the filter and is always positive, if it is conveniently chosen not
so close to zero, the point P; is asymptotically stable.
Following the same procedure, we can study the behavior of
the system around Ps.
The eigenvalues associated to the linear approximation in P

—1+/T¥ 4

Observing all possible values that the parameter p; can as-
sume, the stability of P, is given by
e For u; < 0= dim(E°) = 3 = P, is asymptotically stable.
e For y; > 0 = dim(E®) = 2, dim(E*) =1 = P is

unstable.

e For u; = 0 = dim(E®) = 2, dim(E°) = 1 = nothing can

be concluded from the linear approximation.
Once more, the bifurcation in g; = 0 implies that the application
of the center manifold theorem can be necessary to study the
dynamics restricted to E°.

Including p; as a new dependent variable and using Taylor
expansion around z = —sr, we have, using the Jordan form
translated to the origin

are Ay = —1 and A3 =

v; -1 0 O U1 +p;(—v1 + v3)
UIQ = 0 -1 0 ve |+ | +pi(—v1+ws) |,
U:; 0 0 0 U3 +ui(—v1 + Ug)
and ,
u; =0. (19)

Therefore, repeating steps (14), (15), and (16), we obtain

ha(z, pi) = +piz- (20
Replacing (20) into (19), the vector field, restricted to the cen-

ter manifold, is given by

{ T = s @1
w; = 0.

The construction of the bifurcation diagram corresponding to
(21) is shown in Fig. 5, indicating convergence to the equilib-
rium point for p; < 0 and divergence for p; > 0. As the param-
eter y; is the PLL gain normalized to the cut-off frequency of

H

Fig. 5. Single star with step input: Bifurcation diagram.

the filter and is always positive, if it is conveniently chosen not
so close to zero, the point P, is unstable.

Therefore, we conclude that the OWMS single-star network
presents an asymptotically stable synchronous state with zero
phase and frequency errors for positive and not too small values
of ;, when the phase input is a step signal.

B. Synchronous State Stability with Ramp Input

Using a ramp input, we can write for ¢ > 7y;:

{ Pig () + w15 Pas (8) + paipas sinfps ()] = p1,;Q 22)

D1 () + 1 Pri (8) + pa,ip2,: sinfpy (8)] = p1,:Q,

where 2 is the angular coefficient of the ramp.

Repeating the procedure used for the step input, we change
the independent variable ¢ by T = 1 ;¢ and use primes to in-
dicate the derivatives related to T'. Therefore, system (22) be-
comes

{ 0ii(T) + ¢is(T) + pisinfii (T)] = Q 23)
01:(T) + ©1,(T) + pisin[rey(T)] = Q,
where ; = K2, and = 2

K1, 1223

Choosing the convenient state variables, a third order equa-
tion describes the PLL dynamics, as following

’ ’ = .
T =@y, xy =0 — 1z — pisinzg

1
’ 7 = -
T3 =, zg =8 —x3 — pisinzs.

Therefore, we have three possibilities
e (> u; = there is no equilibrium point.
e Q < p; = there are two equilibrium points
A 2
Q
Py =|0,%arccos{/1— <—~> ,0
i

The eigenvalues associated to the linear approximation in P;
are

-1+

1—4/p2 — Q2

A =—land A3 = 5
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Therefore, P, is asymptotically stable, because A; € R_
and Az 3 € R_ or Ay = A with R(Ag3) < 0.

The eigenvalues associated to the linear approximation in P
are

—144/1+4/p2 - Q2

2
Therefore, P is unstable, because A; € R_ and Ay 5 € R

)\1 = —1 and )\273 =

= . T . 7r
e () = u; = there is one equilibrium point: P = (O, 5 0).
The eigenvalues associated to the linear approximation in P are

Ao=—-land A3 =0

Therefore, P is a non hyperbolic equilibrium point. Once
more, the bifurcation detected in x; = 0 implies the application
of the center manifold theorem, in order to study the dynamics.

Using the Taylor expansion of the sine function sinzy &~ 1 +
1(zy — %) around z5 = %, we can rewrite the system (24) in
the canonical Jordan form, translated to the origin

v, -1 0 0 v Ei(—v; +v3)?
v, |=| 0 -1 0 vy |+ | Bi(—vy +v3)?
'U:; 0 0 0 V3 %(—Ul + 1)3)2

(25)
Thus, there exists a center manifold for (25) that can, locally,
be represented as follows

I/Vlcoc(o) = { (Ula V2, Us, ) € §R3IU1 = hl(x),

Vg = hg(x),v3 =2z, h](O) = O,Dh]’(O), ] = 1, 2 }, (26)
for z sufficiently small.
The center manifold given by (26) must satisfy
Dah(z)[Az + f(z, h(z))]
—Bh(z) — g(z, h(z)) = 0, @7

where A is a ¢ X ¢ matrix having eigenvalues with zero real part,
Bisas x s matrix having eigenvalues with negative real part,
and f and g are the corresponding nonlinear terms.

Now, we want to compute the center manifold and derive the
vector field on it. Since the dynamics described by (25) does
not depend on vy = hg(x, i;), we need only estimate v;
hi(z, pi)-

We try a third-order polynomial

hi(z) = az® + bz’ (28)
Substituting (28) into (27) and using (25), then
hi(z) = —pia® + B2, 29

2

Finally, substituting (29) into (25), the vector field restricted
to the center manifold, neglecting terms higher than ¥(z*), is
given by \

t M 3 Hi o
x = 5 z° + 3 z“.

The construction of the bifurcation diagram corresponding to
(30) is shown in Fig. 6, indicating convergence to the equilib-
rium point for p; > 0 and divergence for p; < 0. As the param-
eter p; is the PLL gain normalized to the cut-off frequency of

(30)
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Fig. 6. Single star with ramp input: Bifurcation diagram.

the filter and is always positive, if it is conveniently chosen not
so close to zero, there is an asymptotically stable equilibrium
point for the network.

It is interesting to notice that phase ramp inputs can be tracked
in OWMS single star networks if the PLL gain of each node (14;)
is greater than the ramp inclination (£2). The synchronous state
has non zero phase error and zero frequency error.

III. CONCLUSIONS

Using the center manifold theorem is a useful tool in order
to establish synchronous state stability conditions for single star
OWMS networks in a non-hyperbolic equilibrium point.

Several relations among electrical parameters and possible
behaviors of the time regeneration system were obtained here,
allowing us to choose parameters for network designing.

The OWMS single star architecture presents, for sufficiently
large gains of the PLLs, zero phase and zero frequency error
asymptotically stable synchronous state, if the phase input is a
step.

Furthermore, considering ramp inputs, for sufficiently large
gains of the PLLs, a non zero phase error and zero frequency
error asymptotically stable synchronous state appears, if the gain
of the PLL nodes is greater than the ramp inclination.
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