• Title/Summary/Keyword: symmetric distributions

Search Result 163, Processing Time 0.026 seconds

Nonlocal strain gradient thermal vibration analysis of double-coupled metal foam plate system with uniform and non-uniform porosities

  • Fenjan, Raad M.;Ahmed, Ridha A.;Alasadi, Abbas A.;Faleh, Nadhim M.
    • Coupled systems mechanics
    • /
    • v.8 no.3
    • /
    • pp.247-257
    • /
    • 2019
  • Fee vibrational characteristics of porous steel double-coupled nanoplate system in thermo-elastic medium is studied via a refined plate model. Different pore dispersions called uniform, symmetric and asymmetric have been defined. Nonlocal strain gradient theory (NSGT) containing two scale parameters has been adopted to stablish size-dependent modeling of the system. Hamilton's principle has been adopted to stablish the governing equations. Obtained results from Galerkin's method are verified with those provided in the literature. The effects of nonlocal parameter, strain gradient, foundation parameters, porosity distributions and porosity coefficient on vibration frequencies of metal foam nanoscale plates have been examined.

Near-tip grid refinement for the effective and reliable natural element crack analysis

  • Cho, J.R.
    • Structural Engineering and Mechanics
    • /
    • v.70 no.3
    • /
    • pp.279-287
    • /
    • 2019
  • This paper intends to introduce a near-tip grid refinement and to explore its usefulness in the crack analysis by the natural element method (NEM). As a sort of local h-refinement in FEM, a NEM grid is locally refined around the crack tip showing the high stress singularity. This local grid refinement is completed in two steps in which grid points are added and Delaunay triangles sharing the crack tip node are divided. A plane-state plate with symmetric edge cracks is simulated to validate the proposed local grid refinement and to examine its usefulness in the crack analysis. The crack analysis is also simulated using a uniform NEM grid for the sake of comparison. The near-tip stress distributions and SIFs that are obtained using a near-tip refined NEM grid are compared with the exact values and those obtained using uniform NEM grid. The convergence rates of global relative error to the total number of grid points between the refined and non-refined NEM grids are also compared.

A Weak-lensing Study of the Double Radio Relic Galaxy Cluster Abell 1240

  • Cho, Hyejeon;Jee, Myungkook James;Finner, Kyle
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.34.1-34.1
    • /
    • 2021
  • Abell 1240 is a merging galaxy cluster hosting prominent, symmetric double radio relics. To constrain its merging history, we provide the first weak-lensing analysis of the dark matter distribution of the Abell 1240 field with Subaru/Suprime-Cam observations after robustly addressing instrumental systematics. We also investigate the cluster galaxy distributions, combining our new MMT/Hectospec observations and the spectroscopic redshifts from the literature. Both weak-lensing mass reconstruction and galaxy distribution show that Abell 1240 consists of two subclusters stretched north to south between the double radio relics. We quantify the significance of the substructures and present their mass estimates. Finally, we discuss a merging stage of Abell 1240 with the current weak-lensing results and the radio relic priors.

  • PDF

A Study on the Dose Changes Depending on the Shielding Block Type of Irradiation During Electron Beam Theraphy (전자선치료 시 조사부위 차폐물 형태에 따른 선량변화 연구)

  • Lee, Sun-Yeb;Park, Cheol-Soo;Lee, Jae-Seung;Goo, Eun-Hoe;Cho, Jae-Hwan;Kim, Eng-Chan;Moon, Soo-Ho;Kim, Jin-Soo;Park, Cheol-Woo;Dong, Kyung-Rae;Kweon, Dae-Cheol
    • Journal of radiological science and technology
    • /
    • v.33 no.3
    • /
    • pp.253-260
    • /
    • 2010
  • The primary focus of this study was to explore the variation in dose distributions of electron beams between different types of construction structure of cut-out blocks embodied in electron cones, given that the structure is considered one of the causes of multiple scattered radiation from electrons which may affect dose distributions. For evaluation, two types of cut-out blocks, divergency and straight, manufactured for this study, were compared in terms of area of interval in distribution of dose, and flatness and symmetric state of surface being radiated. The results showed that divergency cut-out blocks reduced the lateral scattering effects on the thickness of cut-out blocks more substantially than straight ones, leading to more uniform dose distribution at baseline depth. Notably in divergency cut-out blocks, the high dose area decreased more significantly, and more uniform dose distribution was observed at the edge of the irradiated field. This points to a need to consider the characteristics of dose distribution of electron beams when setting up radiotherapy planing at the venues. Therefore, this study is significant as an exploratory work for ensuring high accuracy in dose delivery for patients.

Local Variation of Magnetic Parameters of the Free Layer in TMR Junctions

  • Kim, Cheol-Gi;Shoyama, Toshihiro;Tsunoda, Masakiyo;Takahashil, Migaku;Lee, Tae-Hyo;Kim, Chong-Oh
    • Journal of Magnetics
    • /
    • v.7 no.3
    • /
    • pp.72-79
    • /
    • 2002
  • Local M-H loops have been measured on the free layer of a tunneling magnetoresistance (TMR) junction using the magneto-optical Kerr effect (MOKE) system, with an optical beam size of about 2 $\mu$m diameter. Tunnel junctions were deposited using the DC magnetron sputtering method in a chamber with a base pressure of 3$\times$10$^{-9}$ Torr. The relatively irregular variations of coercive force H$_c$(∼17.5 Oe) and unidirectional anisotropy field H$_{ua}$(∼7.5 Oe) in the as-deposited sample are revealed. After $200{^{\circ}C}$ annealing, He decreases to 15 Oe but H$_{ua}$ increases to 20 Oe with smooth local variations. Two-dimensional plots of H$_c$ and H$_{ua}$ show the symmetric saddle shapes with their axes aligned with the pinned layer, irrespective of the annealing field angle. This is thought to be caused by geometric effects during deposition, together with a minor annealing effect. In addition, the variation of root mean square (RMS) surface roughness reveals it to be symmetric with respect to the center of the pinned-layer axis, with the roughness of 2.5 $\AA$ near the edge and 5.8 $\AA$ at the junction center. Comparison of surface roughness with the variation of H$_{ua}$ suggests that the H$_{ua}$ variation of the free layer is well described by dipole interactions related to surface roughness. As a whole, the reversal magnetization is not uniform over the entire junction area and the macroscopic properties are governed by the average sum of local distributions.

Investigation on hygro-thermal vibration of P-FG and symmetric S-FG nanobeam using integral Timoshenko beam theory

  • Matouk, Hakima;Bousahla, Abdelmoumen Anis;Heireche, Houari;Bourada, Fouad;Bedia, E.A. Adda;Tounsi, Abdelouahed;Mahmoud, S.R.;Tounsi, Abdeldjebbar;Benrahou, K.H.
    • Advances in nano research
    • /
    • v.8 no.4
    • /
    • pp.293-305
    • /
    • 2020
  • In the current research, the free vibrational behavior of the FG nano-beams integrated in the hygro-thermal environment and reposed on the elastic foundation is investigated using a novel integral Timoshenko beam theory (ITBT). The current model has only three variables unknown and requires the introduction of the shear correction factor because her uniformed variation of the shear stress through the thickness. The effective properties of the nano-beam vary according to power-law and symmetric sigmoid distributions. Three models of the hygro-thermal loading are employed. The effect of the small scale effect is considered by using the nonlocal theory of Eringen. The equations of motion of the present model are determined and resolved via Hamilton principle and Navier method, respectively. Several numerical results are presented thereafter to illustrate the accuracy and efficiency of the actual integral Timoshenko beam theory. The effects of the various parameters influencing the vibrational responses of the P-FG and SS-FG nano-beam are also examined and discussed in detail.

Effect of applied magnetic fields on Czochralski single crystal growth (Part II) (Czochralski 단결성 성장특성제어를 위한 자장형태에 관한 연구 (Part 2))

  • Chang Nyung Kim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.4 no.1
    • /
    • pp.46-56
    • /
    • 1994
  • The characteristics of flows, temperatures, concentrations of the boron are numerically studied when uniform axial magnetic fields are applied in the Czechralski crucible. The to governing factors to the flow regimes are buoyancy, thermocapillarity, centrifugal forces, magnetic forces, diffusion coefficient and segregation coefficient of the boron. Since the concentration of the boron is so low that buoyancy effects are negligible, it cannot affect the flow and temperature fields. From the fact that the flow fields are rotationally symmetric, two velocity components in the meridional plane and the circumferential velocity are calculated together with the temperature in the steady state. Based on the known velocity and temperature distributions the unsteady concentration distributions of the boron are calculated. As the strength of the magnetic is increased, the flow velocities are decreased. Circumferential velocities are large near the crucible side-wall and in the region below the rotating crystal. Steep temperatures gradient near the edge of the rotating crystal causes the Marangoni convection. It has been found out that the convection characteristics affects the unsteady transport phenomena of the boron.

  • PDF

Joint analysis of binary and continuous data using skewed logit model in developmental toxicity studies (발달 독성학에서 비대칭 로짓 모형을 사용한 이진수 자료와 연속형 자료에 대한 결합분석)

  • Kim, Yeong-hwa;Hwang, Beom Seuk
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.2
    • /
    • pp.123-136
    • /
    • 2020
  • It is common to encounter correlated multiple outcomes measured on the same subject in various research fields. In developmental toxicity studies, presence of malformed pups and fetal weight are measured on the pregnant dams exposed to different levels of a toxic substance. Joint analysis of such two outcomes can result in more efficient inferences than separate models for each outcome. Most methods for joint modeling assume a normal distribution as random effects. However, in developmental toxicity studies, the response distributions may change irregularly in location and shape as the level of toxic substance changes, which may not be captured by a normal random effects model. Motivated by applications in developmental toxicity studies, we propose a Bayesian joint model for binary and continuous outcomes. In our model, we incorporate a skewed logit model for the binary outcome to allow the response distributions to have flexibly in both symmetric and asymmetric shapes on the toxic levels. We apply our proposed method to data from a developmental toxicity study of diethylhexyl phthalate.

Mixed Convection Heat Transfer from Two Vertical Parallel Plates with Different Conditions (조건이 다른 수직 평형 평판에서 혼합대류 열전달)

  • Kim, S.Y.;Chung, H.S.;Kwon, S.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.4 no.4
    • /
    • pp.243-252
    • /
    • 1992
  • A mixed convection heat transfer from two vertical parallel plates has been studied numerically by the finite difference method. Effects of the Grashof number, the relative length, $L_2/L_1$. the dimensionless temperature ratio, ${\Phi}_2/{\Phi}_1$ and the dimensionless plate spacing, $b/L_1$ are examined for the heat transfer. Independent of the Grashof numbers and $L_2/L_1$, the dimensionless vertical velocity distributions skewed on the left plate as ${\Phi}_2/{\Phi}_1$ decreased. The dimensionless vertical velocity distribution for $Gr/Re^2=1$ and ${\Phi}_2/{\Phi}_1=1.0$ is skewed to the right plate $L_2/L_1=0.5$, symmetric at $L_2/L_1=1.0$ and skewed to the left plate at $L_2/L_1=1.5$. But for $Gr/Re_2=10.0$ and ${\Phi}_2/{\Phi}_1=1.0$ reversed velocity patterns are obtained. Regardless of the Grashof numbers and $L_2/L_1$, the mean Nusselt nembers on the inside surface of the left plate decreases and those of the right inside surface increases as ${\Phi}_2/{\Phi}_1$ increases. Temperature, velocity and mean Nusselt number distributions are apparently not affected by $L_2/L_1$.

  • PDF

Grid Convergence on Surface Pressure Distribution over the RAE-A Wing-Body Configuration (RAE-A 날개-동체 형상의 압력 분포에 대한 격자 수렴성 연구)

  • Kim, Ki Ro;Park, Soo Hyung;Sa, Jeong Hwan;Cho, Kum Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.3
    • /
    • pp.226-232
    • /
    • 2017
  • Surface pressure distributions over the RAE-A wing-body configuration were investigated and the grid convergence along the streamwise, spanwise, and circumferential directions was numerically studied. Flow analysis in subsonic and transonic conditions was conducted using the $k-{\omega}$ Wilcox-Durbin+ turbulence model. Surface pressure distributions for subsonic flows were well matched, but those for transonic shocked flows showed a little discrepancy with the experimental data. A cubic spline extrapolation method was applied in order to investigate the grid convergence. This method presented that the grid resolution in the circumferential direction is the most important grid parameter. A refined grid system was made based on the grid convergence study and provided more accurate prediction, especially on the symmetric body surface of RAE-A configuration.