DOI QR코드

DOI QR Code

Grid Convergence on Surface Pressure Distribution over the RAE-A Wing-Body Configuration

RAE-A 날개-동체 형상의 압력 분포에 대한 격자 수렴성 연구

  • Kim, Ki Ro (Department of Aerospace Information Engineering, Konkuk University) ;
  • Park, Soo Hyung (Department of Aerospace Information Engineering, Konkuk University) ;
  • Sa, Jeong Hwan (Supercomputing Center, Korea Institute of Science and Technology Information) ;
  • Cho, Kum Won (Supercomputing Center, Korea Institute of Science and Technology Information)
  • Received : 2016.11.07
  • Accepted : 2017.02.04
  • Published : 2017.03.01

Abstract

Surface pressure distributions over the RAE-A wing-body configuration were investigated and the grid convergence along the streamwise, spanwise, and circumferential directions was numerically studied. Flow analysis in subsonic and transonic conditions was conducted using the $k-{\omega}$ Wilcox-Durbin+ turbulence model. Surface pressure distributions for subsonic flows were well matched, but those for transonic shocked flows showed a little discrepancy with the experimental data. A cubic spline extrapolation method was applied in order to investigate the grid convergence. This method presented that the grid resolution in the circumferential direction is the most important grid parameter. A refined grid system was made based on the grid convergence study and provided more accurate prediction, especially on the symmetric body surface of RAE-A configuration.

본 연구에서는 RAE "A" 날개-축대칭 동체 형상을 이용하여 유동흐름 방향, Span 방향과 동체 둘레 방향(${\phi}$ 방향)에 따라 격자에 대한 수렴성 및 비행체의 압력 분포 변화를 수치적으로 연구하였다. 아음속 및 천음속 영역 조건에서 $k-{\omega}$ Wilcox-Durbin+ 난류 모델을 사용하여 2차 정확도의 수치적 해를 예측하는 유동해석을 수행하였다. 아음속 유동 조건에서는 해석결과가 실험결과와 매우 잘 일치하였으나, 충격파가 존재하는 천음속 유동에서는 약간의 차이가 발생하였다. Cubic spline을 사용하는 외삽 방법으로 격자 수렴성을 검토하였다. 외삽 방법을 통해 회전 방향의 격자 조밀도가 격자 수렴성에 가장 큰 영향을 미침을 알 수 있었다. 격자 수렴성에 대한 검토 결과를 바탕으로 더 조밀한 격자를 생성하였다. 이를 통해 특히 RAE-A 형상의 축대칭 동체 표면에서 더 정확한 해석 결과를 얻을 수 있음을 보였다.

Keywords

References

  1. Barche, R., "Experimental Database for Computer Program Assessment," AGARD-Report AGARD-AR, Vol. 138, 1979, 2002-0843.
  2. Redeker, G. "DLR-F4 Wing-Body Configuration. A Selection of Experimental Test Cases for the Validation of CFD Codes," AGARD-AR, Vol. 303, 1994.
  3. Vassberg, J. C., and DeHaan, M. A., "Development of a Common Research Model for Applied CFD Validation Studies," 26th AIAA Applied Aerodynamics Conference, AIAA, 2008.
  4. Mavriplis, D. J., Vassberg, J. C., Tinoco, E. N., Mani, M., Brodersen, O. P., Eisfeld, B., Wahls, R. A., Morrison J. H., Zickuhr, T., Levy, D. W., and Murayama, M., "Grid Quality and Resolution Issues from the Drag Prediction Workshop Series," Journal of Aircraft, Vol. 3, No. 46, 2009, pp.935-950.
  5. Levy, D. W., Laflin, K. R., Tinoco, E. N., Vassberg, J. C., Mani, M., Rider, B., Rumsey, C. L., Wahls, R. A., Morrison, J. H., Brodersen, O. P., Crippa, S., Mavriplis, D. J., and Murayama, M., "Summary of Data from the Fifth Computational Fluid Dynamics Drag Prediction Workshop," Journal of Aircraft, Vol. 4, No. 51, 2014, pp.1194-1213.
  6. Tinoco, E. N., "Validation and Minimizing CFD Uncertainty for Commercial Aircraft Applications," 26th AIAA Applied Aerodynamics Conference, AIAA paper 6902, 2008.
  7. Im, Y. H., Chang, K. S., Jeong, H. K., Kwon, J. H., and Park, M. W., "Computational Study on Turbulent Viscous Flow around RAE "A" Wing Axi-Symmetric Body Configuration," Korean Society of Computational Fluids Engineering Conference, 1997, pp.81-85.
  8. Kim, Y. S., Park, S. H., and Kwon, J. H., "Turbulent Flow Simulations about the Aircraft Configuration," Journal of computational fluids engineering, Vol. 4, No. 10, 2005, pp.39-50.
  9. Roe, P. L., "Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes," Journal of computational physics, Vol. 2, No. 43, 1981, pp.357-372.
  10. Park, S. H., and Kwon. J. H., "Implementation of k-w Turbulence Models in an Implicit Multigrid Method," AIAA journal, Vol. 7, No. 42, 2004, pp.1348-1357.
  11. Kim, K. H., and Kim, C., "Accurate, Efficient and Monotonic Numerical methods for Multi-dimensional Compressible Flows Part II: Multi-dimensional Limiting Process," Journal of Computational Physics, Vol. 208, 2005, pp.570-615. https://doi.org/10.1016/j.jcp.2005.02.022
  12. Thivet, F., Knight, D. D., Zheltovodov, A. A., and Maksimov, A. I., "Insights in Turbulence Modeling for Crossing-Shock-Wave/Boundary-Layer Interactions," AIAA journal, Vol. 39, No. 6, 2001, pp.985-995. https://doi.org/10.2514/2.1417