DOI QR코드

DOI QR Code

Near-tip grid refinement for the effective and reliable natural element crack analysis

  • Cho, J.R. (Department of Naval Architecture and Ocean Engineering, Hongik University)
  • Received : 2018.09.17
  • Accepted : 2019.02.20
  • Published : 2019.05.10

Abstract

This paper intends to introduce a near-tip grid refinement and to explore its usefulness in the crack analysis by the natural element method (NEM). As a sort of local h-refinement in FEM, a NEM grid is locally refined around the crack tip showing the high stress singularity. This local grid refinement is completed in two steps in which grid points are added and Delaunay triangles sharing the crack tip node are divided. A plane-state plate with symmetric edge cracks is simulated to validate the proposed local grid refinement and to examine its usefulness in the crack analysis. The crack analysis is also simulated using a uniform NEM grid for the sake of comparison. The near-tip stress distributions and SIFs that are obtained using a near-tip refined NEM grid are compared with the exact values and those obtained using uniform NEM grid. The convergence rates of global relative error to the total number of grid points between the refined and non-refined NEM grids are also compared.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. Anderson, T.L. (1991), Fracture Mechanics: Fundamentals and Applications, 1st Edition, CRC Press.
  2. Areias, P., Rabczuk, T. and De Sa, J.C. (2016), "A novel two-stage discrete crack method based on the screened Poisson equation and local mesh refinement", Comput. Mech., 58(6), 1003-1018. https://doi.org/10.1007/s00466-016-1328-5.
  3. ASTM (1965), "Fracture toughness testing and its applications", ASTM Spec. Tech. Pub., 381, 43-51.
  4. Barsoum, R.S. (1976), "On the use of isoparametric finite elements in linear fracture mechanics", Int. J. Numer. Meth. Eng., 10(1), 25-37. https://doi.org/10.1002/nme.1620100103.
  5. Belytschko, T., Lu, Y.Y., Gu, L. and Tabbara, M. (1995), "Element-free Galerkin methods for static and dynamic fracture", Int. J. Sol. Struct., 32(17-18), 2547-2570. https://doi.org/10.1016/0020-7683(94)00282-2.
  6. Braun, J. and Sambridge, M. (1995), "A numerical method for solving partial differential equations on highly irregular evolving grids", Nat., 376(6542), 655-660. https://doi.org/10.1038/376655a0.
  7. Cao, Z. and Liu, Y. (2012), "A new numerical modelling for evaluating the stress intensity factors in 3-D fracture analysis", Struct. Eng. Mech., 43(3), 321-336. https://doi.org/10.12989/sem.2012.43.3.321.
  8. Chinesta, F., Cescotto, S., Cueto, E. and Lorong, P. (2011), Natural Element Method for the Simulation of Structures and Processes, John Wiley & Sons, New Jersey, U.S.A.
  9. Ching, H.K. and Batra, R.C. (2011), "Determination of crack tip fields in linear elastostatics by the meshless local Petrov-Galerkin (MLPG) method", Comput. Model. Eng. Sci., 2(2), 273-289.
  10. Cho, J.R. and Lee, H.W. (2006), "A Petrov-Galerkin natural element method securing the numerical integration accuracy", J. Mech. Sci. Technol., 20(1), 94-109. https://doi.org/10.1007/BF02916204.
  11. Cho, J.R. and Lee, H.W. (2014), "Calculation of stress intensity factors in 2-D linear fracture mechanics by Petrov-Galerkin natural element method", Int. J. Numer. Meth. Eng., 98(11), 819-839. https://doi.org/10.1002/nme.4666.
  12. Cho, J.R. (2016), "Stress recovery techniques for natural element method in 2-D solid mechanics", J. Mech. Sci. Technol., 30(11), 5083-5091. https://doi.org/10.1007/s12206-016-1026-4.
  13. Daimon, R. and Okada, H. (2014), "Mixed-mode stress intensity factor evaluation by interaction integral method for quadratic tetrahedral finite element with correction terms", Eng. Fract. Mech., 115, 22-42. https://doi.org/10.1016/j.engfracmech.2013.11.009.
  14. Erdogan, F. and Wu, B.H. (1997), "The surface crack problem for a plate with functionally graded properties", ASME J. Appl. Mech., 64(3), 449-456. https://10.1115/1.2788914.
  15. Ergun, M. and Ates, S. (2015), "The stress analysis of a shear wall with matrix displacement method", Struct. Eng. Mech., 53(2), 205-226. https://doi.org/10.12989/sem.2015.53.2.205.
  16. Fleming, M., Chu, Y.A., Moran, B. and Belytschko, T. (1997), "Enriched element-free Galerkin methods for crack tip fields", Int. J. Numer. Meth. Eng., 40(8), 1483-1504. https://doi.org/10.1002/(SICI)1097-0207(19970430)40:8<1483::AID-NME123>3.0.CO;2-6.
  17. Goli, E., Bayesteh, H. and Mohammadi, S. (2014), "Mixed mode fracture analysis of adiabatic cracks in homogeneous and nonhomogeneous materials in the framework of partition of unity and the path-independent interaction integral", Eng. Fract. Mech., 131, 100-127. https://doi.org/10.1016/j.engfracmech.2014.07.013.
  18. Hou, C., Wang, Z., Liang, W., Yu, H. and Wang, Z. (2017), "Investigation of the effects of confining pressure on SIFs and T-stress for CCBD specimens using the XFEM and the interaction integral method", Eng. Fract. Mech., 178, 279-300. https://doi.org/10.1016/j.engfracmech.2017.03.049.
  19. Irwin, G.R. (1957), "Analysis of stresses and strains near the end of a crack traveling a plate", J. Appl. Mech., 24, 361-364. https://doi.org/10.1115/1.4011547
  20. Kim, J.H. and Paulino, G.H. (2002), "Finite element evaluation of mixed mode stress intensity factors in functionally graded materials", Int. J. Numer. Meth. Eng., 53(8), 1903-1935. https://doi.org/10.1002/nme.364.
  21. Lo, S.H. and Lee, C.K. (1992), "Solving crack problems by an adaptive refinement procedure", Eng. Fract. Mech., 43(2), 147-163. https://doi.org/10.1016/0013-7944(92)90118-X.
  22. Moes, N., Dolbow, J. and Belytschko, T. (1999), "A finite element method for crack growth without remeshing", Int. J. Numer. Meth. Eng., 46(1), 131-150. https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J.
  23. Pant, M., Singh, I.V. and Mishra, B.K. (2011), "A novel enrichment criterion for modeling kinked cracks using element free Galerkin method", Int. J. Mech. Sci., 68, 140-149. https://doi.org/10.1016/j.ijmecsci.2013.01.008.
  24. Rabczuk, T. and Belytschko, T. (2004), "Cracking particles: A simplified meshfree method for arbitrary evolving cracks", Int. J. Numer. Meth. Eng., 61(13), 2316-2343. https://doi.org/10.1002/nme.1151.
  25. Rao, B.N. and Rahman, S. (2000), "An efficient meshless method for fracture analysis of cracks", Comput. Mech., 26(4), 398-408. https://doi.org/10.1007/s004660000189.
  26. Shi, J., Ma, W. and Li, N. (2013), "Extended meshless method based on partition of unity for solving multiple crack problems", Meccan., 43(9), 2263-2270. https://doi.org/10.1007/s11012-013-9743-6.
  27. Shih, C.F. and Asaro, R.J. (1998), "Elasto-plastic analysis of cracks on biomaterial interfaces: Part I-small scale yielding", J. Appl. Mech., 55, 299-316. https://doi.org/10.1115/1.3173676
  28. Solanki, S., Daniewicz, S.R. and Newman Jr, J.C. (2003), "Finite element modeling of placiticity-induced crack closure with emphasis on geometry and mesh refinement effects", Eng. Fract. Mech., 70(12), 1475-1489. https://doi.org/10.1016/S0013-7944(02)00168-6.
  29. Sukumar, N., Moran, A. and Belytschko, T. (1998), "The natural element method in solid mechanics", Int. J. Numer. Meth. Eng., 43(5), 839-887. https://doi.org/10.1002/(SICI)1097-0207(19981115)43:5<839::AID-NME423>3.0.CO;2-R.
  30. Sukumar, N. and Moran, A. (1999), "$C^{1}$ natural neighbor interpolant for partial differential equations", Numer. Meth. Part. Diff. Eqs., 15(4), 417-447. https://doi.org/10.1002/(SICI)1098-2426(199907)15:4<417::AID-NUM2>3.0.CO;2-S.
  31. Szabo, B. and Babuska, I. (1991), Finite Element Analysis, John Wiley & Sons, New York, U.S.A.
  32. Tong, P., Pian, T.H.H. and Lasry, S.J. (1973), "A hybrid element approach to crack problems in plane elasticity", Int. J. Numer. Meth. Eng., 7(3), 297-308. https://doi.org/10.1002/nme.1620070307.
  33. Tracey, D.M. (1971), "Finite elements for determination of crack tip elastic stress intensity factors", Eng. Fract. Mech., 3(3), 255-265. https://doi.org/10.1016/0013-7944(71)90036-1.
  34. Xiao, Q.Z., Karihaloo, B.L. and Liu, X.Y. (2004), "Direct determination of SIF and higher order terms of mixed mode cracks by a hybrid crack element", Int. J. Fract., 125(3-4), 207-225. https://doi.org/10.1023/B:FRAC.0000022229.54422.13.