Browse > Article
http://dx.doi.org/10.12989/sem.2019.70.3.279

Near-tip grid refinement for the effective and reliable natural element crack analysis  

Cho, J.R. (Department of Naval Architecture and Ocean Engineering, Hongik University)
Publication Information
Structural Engineering and Mechanics / v.70, no.3, 2019 , pp. 279-287 More about this Journal
Abstract
This paper intends to introduce a near-tip grid refinement and to explore its usefulness in the crack analysis by the natural element method (NEM). As a sort of local h-refinement in FEM, a NEM grid is locally refined around the crack tip showing the high stress singularity. This local grid refinement is completed in two steps in which grid points are added and Delaunay triangles sharing the crack tip node are divided. A plane-state plate with symmetric edge cracks is simulated to validate the proposed local grid refinement and to examine its usefulness in the crack analysis. The crack analysis is also simulated using a uniform NEM grid for the sake of comparison. The near-tip stress distributions and SIFs that are obtained using a near-tip refined NEM grid are compared with the exact values and those obtained using uniform NEM grid. The convergence rates of global relative error to the total number of grid points between the refined and non-refined NEM grids are also compared.
Keywords
crack analysis; near-tip grid refinement; natural element method; stress intensity factor; near-tip stress distribution; convergence rate;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Shi, J., Ma, W. and Li, N. (2013), "Extended meshless method based on partition of unity for solving multiple crack problems", Meccan., 43(9), 2263-2270. https://doi.org/10.1007/s11012-013-9743-6.
2 Shih, C.F. and Asaro, R.J. (1998), "Elasto-plastic analysis of cracks on biomaterial interfaces: Part I-small scale yielding", J. Appl. Mech., 55, 299-316.   DOI
3 Solanki, S., Daniewicz, S.R. and Newman Jr, J.C. (2003), "Finite element modeling of placiticity-induced crack closure with emphasis on geometry and mesh refinement effects", Eng. Fract. Mech., 70(12), 1475-1489. https://doi.org/10.1016/S0013-7944(02)00168-6.   DOI
4 Sukumar, N., Moran, A. and Belytschko, T. (1998), "The natural element method in solid mechanics", Int. J. Numer. Meth. Eng., 43(5), 839-887. https://doi.org/10.1002/(SICI)1097-0207(19981115)43:5<839::AID-NME423>3.0.CO;2-R.   DOI
5 Sukumar, N. and Moran, A. (1999), "$C^{1}$ natural neighbor interpolant for partial differential equations", Numer. Meth. Part. Diff. Eqs., 15(4), 417-447. https://doi.org/10.1002/(SICI)1098-2426(199907)15:4<417::AID-NUM2>3.0.CO;2-S.   DOI
6 Szabo, B. and Babuska, I. (1991), Finite Element Analysis, John Wiley & Sons, New York, U.S.A.
7 Tong, P., Pian, T.H.H. and Lasry, S.J. (1973), "A hybrid element approach to crack problems in plane elasticity", Int. J. Numer. Meth. Eng., 7(3), 297-308. https://doi.org/10.1002/nme.1620070307.   DOI
8 Tracey, D.M. (1971), "Finite elements for determination of crack tip elastic stress intensity factors", Eng. Fract. Mech., 3(3), 255-265. https://doi.org/10.1016/0013-7944(71)90036-1.   DOI
9 Xiao, Q.Z., Karihaloo, B.L. and Liu, X.Y. (2004), "Direct determination of SIF and higher order terms of mixed mode cracks by a hybrid crack element", Int. J. Fract., 125(3-4), 207-225. https://doi.org/10.1023/B:FRAC.0000022229.54422.13.   DOI
10 Anderson, T.L. (1991), Fracture Mechanics: Fundamentals and Applications, 1st Edition, CRC Press.
11 Areias, P., Rabczuk, T. and De Sa, J.C. (2016), "A novel two-stage discrete crack method based on the screened Poisson equation and local mesh refinement", Comput. Mech., 58(6), 1003-1018. https://doi.org/10.1007/s00466-016-1328-5.   DOI
12 ASTM (1965), "Fracture toughness testing and its applications", ASTM Spec. Tech. Pub., 381, 43-51.
13 Barsoum, R.S. (1976), "On the use of isoparametric finite elements in linear fracture mechanics", Int. J. Numer. Meth. Eng., 10(1), 25-37. https://doi.org/10.1002/nme.1620100103.   DOI
14 Belytschko, T., Lu, Y.Y., Gu, L. and Tabbara, M. (1995), "Element-free Galerkin methods for static and dynamic fracture", Int. J. Sol. Struct., 32(17-18), 2547-2570. https://doi.org/10.1016/0020-7683(94)00282-2.   DOI
15 Braun, J. and Sambridge, M. (1995), "A numerical method for solving partial differential equations on highly irregular evolving grids", Nat., 376(6542), 655-660. https://doi.org/10.1038/376655a0.   DOI
16 Cao, Z. and Liu, Y. (2012), "A new numerical modelling for evaluating the stress intensity factors in 3-D fracture analysis", Struct. Eng. Mech., 43(3), 321-336. https://doi.org/10.12989/sem.2012.43.3.321.   DOI
17 Cho, J.R. and Lee, H.W. (2014), "Calculation of stress intensity factors in 2-D linear fracture mechanics by Petrov-Galerkin natural element method", Int. J. Numer. Meth. Eng., 98(11), 819-839. https://doi.org/10.1002/nme.4666.   DOI
18 Chinesta, F., Cescotto, S., Cueto, E. and Lorong, P. (2011), Natural Element Method for the Simulation of Structures and Processes, John Wiley & Sons, New Jersey, U.S.A.
19 Ching, H.K. and Batra, R.C. (2011), "Determination of crack tip fields in linear elastostatics by the meshless local Petrov-Galerkin (MLPG) method", Comput. Model. Eng. Sci., 2(2), 273-289.
20 Cho, J.R. and Lee, H.W. (2006), "A Petrov-Galerkin natural element method securing the numerical integration accuracy", J. Mech. Sci. Technol., 20(1), 94-109. https://doi.org/10.1007/BF02916204.   DOI
21 Cho, J.R. (2016), "Stress recovery techniques for natural element method in 2-D solid mechanics", J. Mech. Sci. Technol., 30(11), 5083-5091. https://doi.org/10.1007/s12206-016-1026-4.   DOI
22 Daimon, R. and Okada, H. (2014), "Mixed-mode stress intensity factor evaluation by interaction integral method for quadratic tetrahedral finite element with correction terms", Eng. Fract. Mech., 115, 22-42. https://doi.org/10.1016/j.engfracmech.2013.11.009.   DOI
23 Erdogan, F. and Wu, B.H. (1997), "The surface crack problem for a plate with functionally graded properties", ASME J. Appl. Mech., 64(3), 449-456. https://10.1115/1.2788914.   DOI
24 Ergun, M. and Ates, S. (2015), "The stress analysis of a shear wall with matrix displacement method", Struct. Eng. Mech., 53(2), 205-226. https://doi.org/10.12989/sem.2015.53.2.205.   DOI
25 Lo, S.H. and Lee, C.K. (1992), "Solving crack problems by an adaptive refinement procedure", Eng. Fract. Mech., 43(2), 147-163. https://doi.org/10.1016/0013-7944(92)90118-X.   DOI
26 Fleming, M., Chu, Y.A., Moran, B. and Belytschko, T. (1997), "Enriched element-free Galerkin methods for crack tip fields", Int. J. Numer. Meth. Eng., 40(8), 1483-1504. https://doi.org/10.1002/(SICI)1097-0207(19970430)40:8<1483::AID-NME123>3.0.CO;2-6.   DOI
27 Goli, E., Bayesteh, H. and Mohammadi, S. (2014), "Mixed mode fracture analysis of adiabatic cracks in homogeneous and nonhomogeneous materials in the framework of partition of unity and the path-independent interaction integral", Eng. Fract. Mech., 131, 100-127. https://doi.org/10.1016/j.engfracmech.2014.07.013.   DOI
28 Hou, C., Wang, Z., Liang, W., Yu, H. and Wang, Z. (2017), "Investigation of the effects of confining pressure on SIFs and T-stress for CCBD specimens using the XFEM and the interaction integral method", Eng. Fract. Mech., 178, 279-300. https://doi.org/10.1016/j.engfracmech.2017.03.049.   DOI
29 Irwin, G.R. (1957), "Analysis of stresses and strains near the end of a crack traveling a plate", J. Appl. Mech., 24, 361-364.   DOI
30 Kim, J.H. and Paulino, G.H. (2002), "Finite element evaluation of mixed mode stress intensity factors in functionally graded materials", Int. J. Numer. Meth. Eng., 53(8), 1903-1935. https://doi.org/10.1002/nme.364.   DOI
31 Moes, N., Dolbow, J. and Belytschko, T. (1999), "A finite element method for crack growth without remeshing", Int. J. Numer. Meth. Eng., 46(1), 131-150. https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J.   DOI
32 Rao, B.N. and Rahman, S. (2000), "An efficient meshless method for fracture analysis of cracks", Comput. Mech., 26(4), 398-408. https://doi.org/10.1007/s004660000189.   DOI
33 Pant, M., Singh, I.V. and Mishra, B.K. (2011), "A novel enrichment criterion for modeling kinked cracks using element free Galerkin method", Int. J. Mech. Sci., 68, 140-149. https://doi.org/10.1016/j.ijmecsci.2013.01.008.   DOI
34 Rabczuk, T. and Belytschko, T. (2004), "Cracking particles: A simplified meshfree method for arbitrary evolving cracks", Int. J. Numer. Meth. Eng., 61(13), 2316-2343. https://doi.org/10.1002/nme.1151.   DOI