• Title/Summary/Keyword: switching power loss

Search Result 780, Processing Time 0.026 seconds

Single Phase PWM Converter For High-Speed Railway Propulsion System Using Discontinuous PWM (불연속 변조 기법을 이용한 고속철도 추진제어장치용 단상 PWM 컨버터)

  • Song, Min-Sup
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.4
    • /
    • pp.448-457
    • /
    • 2017
  • In this paper, for high speed railway propulsion systems, a single phase PWM Converter using discontinuous PWM (DPWM) was investigated. The conventional PWM Converter uses a low frequency modulation index of less than 10 to reduce switching losses due to high power characteristics, which results in low control frequency bandwidth and requires an additional compensation method. To solve these problems, the DPWM method, which is commonly used in three phase PWM Inverters, was adopted to a single phase PWM Converter. The proposed method was easily implemented using offset voltage techniques. Method can improve the control performance by doubling the frequency modulation index for the same switching loss, and can also bring the same dynamic characteristics among switches. Proposed DPWM method was verified by simulation of 100 kW PWM converter.

Design of a Dual-Band Switch with 2.4[GHz]/5.8[GHz] (2.4[GHz]/5.8[GHz] 이중대역 SPDT 스위치 설계)

  • Roh, Hee-Jung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.8
    • /
    • pp.52-58
    • /
    • 2008
  • Ths paper describes the Dual-band switch which was proposed new structure that could improved the specification of broadband and designed by the optimized structure through simulation. The Dual-band switch with 2.4[GHz]/5.8[GHz] that can apply to 802.11a/b/g system that is commercialized present was studied to get a new structure with higher power, high isolation. The transmitter of switch was designed to operate a parallel switching element with stack structure of two FET. The receiver designed to have asymmetry structure that insert series FET in addition to basic serial/parallel FET. SPDT(Single Pole Double Throw) Tx/Rx FET switch is a device that can do switching from a port of input to two port of output. The fabricated SPDT switch has the characteristic of insertion loss of a below -3[dB] form DC to 6[GHz] and the isolation of a below -30D[dB](Rx mode).

A Characteristic Analysis of Heater Triggered Persistent Current System with 2G High Tc Superconducting Tape (차세대 고온초전도 선재를 이용한 영구전류시스템의 히터트리거 특성 해석)

  • Park, Dong-Keun;Kang, Hyoung-Ku;Yang, Seong-Eun;Ahn, Min-Cheol;Yoon, Yong-Soo;Yoon, Kyung-Yong;Lee, Sang-Jin;Ko, Tae-Kuk
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1228-1230
    • /
    • 2005
  • This paper deals with design of heater trigger switching in a persistent current system(PCS) by finite element method(FEM) analysis of YBCO coated conductor(CC) tape. Most promising superconducting wire is YBCO coated conductor tape in these days for its high n value and critical current independency from external magnetic field. It is expected to be used many superconducting application such as fault current limiter and cable etc. The superconducting magnet which is operated in persistent current mode in SMES, NMR, MRI and MAGLEV has many advantages such as a high uniformity of a magnetic field and reducing a thermal loss. A PCS system consists of magnet power supply (MPS) which energized current to a magnet, heater, a coated conductor tape for switching, and superconducting magnet. In this paper, the characteristic of thermal quench of the YBCO CC tape and BSCCO tape by heater trigger analyzed by FEM. And optimal length of heater is calculated by temperature and time analysis. This heater trigger analysis is expected to be a basic concept of PCS application design.

  • PDF

Contact Resistance and Leakage Current of GaN Devices with Annealed Ti/Al/Mo/Au Ohmic Contacts

  • Ha, Min-Woo;Choi, Kangmin;Jo, Yoo Jin;Jin, Hyun Soo;Park, Tae Joo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.2
    • /
    • pp.179-184
    • /
    • 2016
  • In recent years, the on-resistance, power loss and cell density of Si power devices have not exhibited significant improvements, and performance is approaching the material limits. GaN is considered an attractive material for future high-power applications because of the wide band-gap, large breakdown field, high electron mobility, high switching speed and low on-resistance. Here we report on the Ohmic contact resistance and reverse-bias characteristics of AlGaN/GaN Schottky barrier diodes with and without annealing. Annealing in oxygen at $500^{\circ}C$ resulted in an increase in the breakdown voltage from 641 to 1,172 V for devices with an anode-cathode separation of $20{\mu}m$. However, these annealing conditions also resulted in an increase in the contact resistance of $0.183{\Omega}-mm$, which is attributed to oxidation of the metal contacts. Auger electron spectroscopy revealed diffusion of oxygen and Au into the AlGaN and GaN layers following annealing. The improved reverse-bias characteristics following annealing in oxygen are attributed to passivation of dangling bonds and plasma damage due to interactions between oxygen and GaN/AlGaN. Thermal annealing is therefore useful during the fabrication of high-voltage GaN devices, but the effects on the Ohmic contact resistance should be considered.

Design of Electromagnetic Band Gap Structure for Global Navigation Satellite Service (Global-Navigation Satellite Service를 위한 Electromagnetic Band Gap 구조체 설계)

  • Chung, Ki-Hyun;Jang, Young-Jin;Yeo, Sung-Dae;Jung, Chang-Won;Kim, Seong-Kweon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.1
    • /
    • pp.27-32
    • /
    • 2015
  • In this paper, a mushroom typed electromagnetic band gap (EBG) structure to be inserted in the printed circuit board (PCB) inner layer in order to stabilize the PCB power line is proposed for global-navigation satellite service (GNSS). In designing the proposed EBG structure, the target stop-bandwidth was designed from 1.55GHz to 1.81GHz including GNSS and mobile communication-related frequency bandwidth. In this bandwidth, the insertion loss(S21) was observed below about -40dB. From the simulation results, it is expected that the stabilization of power delivery network (PDN) structure in the PCB circuit design should be improved and the effective correspondence to EMI will be helpful.

Multi-Mode Wireless Power Transfer System with Dual Loop Structure (이중루프 구조를 갖는 다중모드 무선전력전송 시스템)

  • Han, Minseok
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.6
    • /
    • pp.578-583
    • /
    • 2016
  • In this paper, we propose a multi-mode wireless power transfer (WPT) system with a dual loop structure. The proposed multi-mode WPT system consist of outer loop module which can operate at two different frequency bands including 6.78 MHz magnetic resonance WPT mode and 13.56 MHz near field communication (NFC) mode and inner loop module connected with outer loop which can operate at two different frequency bands including WPC mode and PMA mode based on inductive coupling standards. In order to be able to embed this system into smartphone battery back cover, the electrical designs are optimized and then the size was fixed $45{\times}90{\times}0.35mm3$ (including ferrite sheet) which is the same commercial smartphone. The proposed multi-mode WPT module can cover WPC and PMA mode based on inductive coupling. Moreover, it has more than 20 dB return loss characteristics at two different frequency bands including 6.78 MHz and 13.56 MHz, and shows more than 70 % transfer efficiency between resonant coils at 6.78 MHz in magnetic resonant charging environment.

Air-Conditioner Power Source Device to Meet the Harmonic Guide Lines (고조파 규제값에 적합한 에어컨 전원장치)

  • Mun, Sang-Pil;Park, Yeong-Jo;Seo, Gi-Yeong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.10
    • /
    • pp.581-586
    • /
    • 2002
  • To improve the current waveform of diode rectifiers, we propose a new operating principle for the voltage-doubler diode rectifiers. In the conventional voltage-doubler rectifier circuit, relatively large capacitors are used to boost the output voltage, while the proposed circuit uses smaller ones and a small reactor not to boost the output voltage but improve the input current waveform. A circuit design method is shown by experimentation and confirmed simulation. The experimental results of the proposed diode rectifier satisfies the harmonic guide lines. A high input power factor of 97(%) and an efficiency of 98[%] are also obtained. The new rectifier with no controlled switches meet the harmonic guide lines, resulting in a simple, reliable and low-cost at-to dc converters in comparison with the boost-type current-improving circuits. This paper proposes a nonlinear impedance circuit composed by diodes and inductors or capacitors. This circuit needs no control circuits and switches, and the impedance value is changed by the polarity of current or voltage. And this paper presents one of these applications to improve the input current of capacitor input diode rectifiers. The rectifier using the nonlinear impedance circuit is constructed with four diodes and four capacitors in addition to the conventional rectifiers, that is, it has eight diodes and five capacitors, including a DC link capacitor. It makes harmonic components of the input current reduction and the power factor improvement. Half pulse-width modulated (HPWM) inverter was explained compared with conventional pulse width modulated(PWM) inverter. Proposed HPWM inverter eliminated dead-time by lowering switching loss and holding over-shooting.

Effect of High-Temperature Post-Oxidation Annealing in Diluted Nitric Oxide Gas on the SiO2/4H-SiC Interface (4H-SiC와 산화막 계면에 대한 혼합된 일산화질소 가스를 이용한 산화 후속 열처리 효과)

  • In kyu Kim;Jeong Hyun Moon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.1
    • /
    • pp.101-105
    • /
    • 2024
  • 4H-SiC power metal-oxide-semiconductor field effect transistors (MOSFETs) have been developed to achieve lower specific-on-resistance (Ron,sp), and the gate oxides have been thermally grown. The poor channel mobility resulting from the high interface trap density (Dit) at the SiO2/4H-SiC interface significantly affects the higher switching loss of the power device. Therefore, the development of novel fabrication processes to enhance the quality of the SiO2/4H-SiC interface is required. In this paper, NO post-oxidation annealing (POA) by using the conditions of N2 diluted NO at a high temperature (1,300℃) is proposed to reduce the high interface trap density resulting from thermal oxidation. The NO POA is carried out in various NO ambient (0, 10, 50, and 100% NO mixed with 100, 90, 50, and 0% of high purity N2 gas to achieve the optimized condition while maintaining a high temperature (1,300℃). To confirm the optimized condition of the NO POA, measuring capacitance-voltage (C-V) and current-voltage (I-V), and time-of-flight secondary-ion mass spectrometry (ToF-SIMS) are employed. It is confirmed that the POA condition of 50% NO at 1,300℃ facilitates the equilibrium state of both the oxidation and nitridation at the SiO2/4H-SiC interface, thereby reducing the Dit.

An Application of advanced Dijkstra algorithm and Fuzzy rule to search a restoration topology in Distribution Systems (배전계통 사고복구 구성탐색을 위한 개선된 다익스트라 알고리즘과 퍼지규칙의 적용)

  • Kim, Hoon;Jeon, Young-Jae;Kim, Jae-Chul;Choi, Do-Hyuk;Chung, Yong-Chul;Choo, Dong-Wook
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.537-540
    • /
    • 2000
  • The Distribution System consist of many tie-line switches and sectionalizing switches, operated a radial type. When an outage occurs in Distribution System, outage areas are isolated by system switches, has to restored as soon as possible. At this time, system operator have to get a information about network topology for service restoration of outage areas. Therefore, the searching result of restorative topology has to fast computation time and reliable result topology for to restore a electric service to outage areas, equal to optimal switching operation problem. So, the problem can be defined as combinatorial optimization problem. The service restoration problem is so important problem which have outage area minimization, outage loss minimization. Many researcher is applying to the service restoration problem with various techniques. In this paper, advanced Dijkstra algorithm is applied to searching a restoration topology, is so efficient to searching a shortest path in graph type network. Additionally, fuzzy rules and operator are applied to overcome a fuzziness of correlation with input data. The present technique has superior results which are fast computation time and searching results than previous researches, demonstrated by example distribution model system which has 3 feeders, 26 buses. For a application capability to real distribution system, additionally demonstrated by real distribution system of KEPCO(Korea Electric Power Corporation) which has 8 feeders and 140 buses.

  • PDF

A study on the design of the boosted voltage cenerator for low power DRAM (저전력 DRAM 구현을 위한 boosted voltage generator에 관한 연구)

  • 이승훈;주종두;진상언;신홍재;곽계달
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.530-533
    • /
    • 1998
  • In this paper, a new scheme of a boosted voltage generator (BVG) is designed for low powr DRAM's. The designed BVG can supply stable $V_{pp}$ using a new circuit operting method. This method controls charge pumping capability by switching the supply voltage and ring oscillator frequency of driving circuit, so the BVG can save area and reduce the powr dissipation during $V_{pp}$ maintaining period. The charge pumping circuit of the BVG suffers no $V_{T}$ loss and is to be applicable to low-voltage DRAM's. $V_{pp}$ level detecting circuit can detect constant value of $V_{pp}$ against temperature variation. The level of $V_{pp}$ varies -0.55%~0.098% during its maintaining period. Charge pumping circuit can make $V_{pp}$ level up to 2.95V with $V_{cc}$ =1.5V. The degecting level of $V_{pp}$ level detecting circuit changes -0.34% ~ 0.01% as temperature varies from -20 to 80.deg. C. The powr dissipation during V.$_{pp}$ maintaining period is 4.1mW.W.1mW.

  • PDF