DOI QR코드

DOI QR Code

Design of Electromagnetic Band Gap Structure for Global Navigation Satellite Service

Global-Navigation Satellite Service를 위한 Electromagnetic Band Gap 구조체 설계

  • 정기현 (서울과학기술대학교 NID융합기술대학원) ;
  • 장영진 (서울과학기술대학교 일반대학원 미디어IT공학과) ;
  • 여성대 (서울과학기술대학교 NID융합기술대학원) ;
  • 정창원 (서울과학기술대학교 NID융합기술대학원) ;
  • 김성권 (서울과학기술대학교 전자IT미디어공학과)
  • Received : 2014.11.20
  • Accepted : 2015.01.12
  • Published : 2015.01.31

Abstract

In this paper, a mushroom typed electromagnetic band gap (EBG) structure to be inserted in the printed circuit board (PCB) inner layer in order to stabilize the PCB power line is proposed for global-navigation satellite service (GNSS). In designing the proposed EBG structure, the target stop-bandwidth was designed from 1.55GHz to 1.81GHz including GNSS and mobile communication-related frequency bandwidth. In this bandwidth, the insertion loss(S21) was observed below about -40dB. From the simulation results, it is expected that the stabilization of power delivery network (PDN) structure in the PCB circuit design should be improved and the effective correspondence to EMI will be helpful.

본 논문에서는 GNSS(Global-Navigation Satellite Service)에서 사용되는 단말기의 PCB(Printed Circuit Board) 전원안정화를 위해서 PCB 내층에 삽입될 EBG(Electromagnetic Band Gap) 구조체를 제안한다. 버섯모양의 제안된 EBG 구조체를 통한 PCB에서의 관심 금지대역폭/저지대역폭 주파수는 GNSS와 이동통신 관련 주파수를 포함하는 1.55GHz에서 1.81GHz이었으며, 시뮬레이션 결과, 이 구간에서 삽입손실(S21)이 약 -40dB 이하로 형성됨을 볼 수 있었다. 본 연구결과는 향후, PCB 회로 설계의 PDN(Power Delivery Network)구조의 안정화 향상 및 EMI(Electro Magnetic Interference) 대책에 효과적 대응이 유용할 것으로 기대된다.

Keywords

References

  1. S. Radu and D. Hockanson, "An investigation of PCB radiated emissions from simultaneous switching noise," In Proc. IEEE Int. Symp. Electromagnetic Compatibility, Seattle, WA, vol. 2, Aug. 1999, pp. 893-898.
  2. K. H Chung, Y. J Jang, C. W Jung, S. K Kim, "A study on Source Stability Design Method by Power Integrity Analysis," J. of the Korea Institute of Electronic Communication Sciences, vol. 9, no. 7, June 2014, pp. 753-759. https://doi.org/10.13067/JKIECS.2014.9.7.753
  3. V. Ricchiuti, "Power-supply decoupling on fully populated high-speed digital PCBs," IEEE Trans. Electromagnetic Compatibility, vol. 43, no. 4, Nov. 2001, pp. 671-676. https://doi.org/10.1109/15.974649
  4. M. Xu, T. H. Hubing, J. Drewniak, T. Van Doren, and R. E. DuBroff, "Modeling printed circuit boards with embedded decoupling capacitance," IEEE Int. Symp. Electromagnetic Compatibility, Montreal, Canada, Aug. 2001, pp. 515-520.
  5. S. Shahparnia and O. M. Ramahi, "Electromagnetic interference(EMI) reduction from printed circuit boards (PCB) using electromagnetic band gap structures," IEEE Trans. Electromagnetic Compatibility, vol. 46, no. 4, Nov. 2004, pp. 580-587. https://doi.org/10.1109/TEMC.2004.837671
  6. D. Sievenpiper, L. Zhang, R. F. J. Broas, N. G.Alexopolous, and E. Yablonovitch, "High impedance electromagnetic surfaces with a forbidden frequency band," IEEE Trans. Microwave Theory and Techniques, vol. 47, no. 11, Nov. 1999. pp. 2059-2074. https://doi.org/10.1109/22.798001
  7. T. Kamgaing, and O. M. Ramahi, "Inductanceenhanced high-impedance surfaces for broadband simultaneous switching noise mitigation in power planes," In Proc. IEEE MTT-S Int. Microw. Symp. Digest, vol. 3, June 2003, pp. 2165-2168.
  8. S. Shahparnia, B. Mohajajer-Iravani, and O. M. Ramahi, "Eletromagnetic noise mitigation in high-speed printed circuit boards and packaging using electromagnetic bandgap structures," 54th Electronic Components and Technology Conf., Las Vegas, NV, June 2004, pp. 1831-1836.
  9. G. T Lei, R. W. Techentin, P. R. Hayes, D. J. Schwab, and B. K. Gilbert, "Wave Model Solution to the Ground/Power Plane Noise Problem," IEEE Trans. Instrumentation and Measurement, vol. 44, no. 2, Nov. 1995, pp. 300-303. https://doi.org/10.1109/19.377836
  10. J. Mao, C. Wang, and G. Selli, "Memory DIMM DC Power Distribution Analysis and Design," IEEE Int. Electronic Components and Technology Conf., Electromagnetic Compatibility, 2003, pp. 597-602.
  11. K. R. Lee, S. K. Kim, "Study of the Propagation Model considering Refractive Channel Environment between Korea and Japan," J. of the Korea Institute of Electronic Communication Sciences, vol. 8, no. 1, Jan. 2013. pp.49-54 https://doi.org/10.13067/JKIECS.2013.8.1.049