• Title/Summary/Keyword: switching frequency

Search Result 2,051, Processing Time 0.035 seconds

A Fully-Integrated DC-DC Buck Converter Using A New Gate Driver (새로운 게이트 드라이버를 이용한 완전 집적화된 DC-DC 벅 컨버터)

  • Ahn, Young-Kook;Jeon, In-Ho;Roh, Jeong-Jin
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.49 no.6
    • /
    • pp.1-8
    • /
    • 2012
  • This paper presents a fully-integrated buck converter equipped with packaging inductors. These inductors include parasitic inductances of the bonding wires and lead frames in the package. They have significantly better Q factors than the best on-chip inductors implemented on silicon. This paper also proposes a low-swing gate driver for efficient regulation of high-frequency switching converters. The low-swing driver uses the voltage drop of a diode-connect transistor. The proposed converter is designed and fabricated using a $0.13-{\mu}m$ CMOS process. The fully-integrated buck converter achieves 68.7% and 86.6% efficiency for 3.3 V/2.0 V and 2.8 V/2.3 V conversions, respectively.

Doors open and close during regenerative energy harvester developed (자동문 개폐 시 회생에너지 하베스트 개발)

  • Park, Won-hyeon;Kim, Min;Jeong, Jae-hoon;Lee, Dong-heon;Byun, Gi-sik;Kim, Gwan-hyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.257-258
    • /
    • 2015
  • Korean power consumption of the electrical supply problems due to excess demand is repeated every year, the interest in energy increasing social and personal cost has been subject to the number of ways to reduce this cost increases. Automatic doors and automatic door installation market is increasing every year and frequently, when used in general commercial and communal porch consumption based on average 300 times a day power is 70[W] degree is a monthly average usage is about 50.4[KW]. The level can not ignore the power consumption due to switching frequency is large. In this paper, by converting the energy to be discarded in the automatic doors to the inverter and the regenerative energy and to develop control systems for power regeneration to reduce the power consumption by utilizing automatic contact auxiliary power.

  • PDF

Design and Implementation of a Control System for the Interleaved Boost PFC Converter in On-Board Battery Chargers (차량 탑재형 배터리 충전기의 인터리브드 부스트 PFC 컨버터 제어시스템 설계 및 구현)

  • Lee, Jun Hyok;Jung, Kwang-Soon;Lee, Kyung-Jung;Jung, Jae Yeop;Kim, Ho Kyung;Hong, Sung-Soo;Ahn, Hyun-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.5
    • /
    • pp.843-850
    • /
    • 2016
  • In this paper, we propose a digital controller design process for the interleaved type of a boost PFC (Power Factor Correction) converter which can disperse the heat of the switching devices due to the interleaved topology. We establish a mathematical model of a boost PFC converter and propose a controller design method based on the root locus. The performance of the designed controller is verified by simulations. The measurement of the input voltage, inductor currents, and the converter output link voltage are needed for the control of the converter system which consists of a power unit and a control unit where a high-performance 32-bit microcontroller is used. The adjustment of A/D conversion timing is also needed to avoid high frequency noise generated when the switches on/off. It is illustrated by the real experiments that the designed control system with the properly adjusted ADC timing satisfies the given performance specifications of the interleaved boost PFC converter in the on-board slow battery charger.

Studies on the Application of Unit-inverter Parallel Operation to Sea-water Lift Pump in Power Plant (단위 인버터 병렬운전에 의한 발전소 해수펌크 적용)

  • 김수열;류홍우
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.1
    • /
    • pp.1-7
    • /
    • 1998
  • Due to the increase in capacity of auxiliary machinery in power plant, the importance of energy saving has been greatly emphasized. If the speed of fans or pumps is controlled in accordance with the variation of load, large electric energy can be saved. Large capacity inverter, 2MVA GTO inverter, has been developed by operating two of 1MVA unit inverters in parallel. The parallel operation of the unit inverter is accomplished through two output transformers of which the secondary windings are connected in series. The system is composed of one control cubicle, one rectifier cubicle and 2 unit inverter cubicles. This inverter system was applied to the sea water lift pump(SLP) driven by a 6.6KV 1500KW induction motor in Seo-Inchon power plant to save the electric energy. The parallel operation of inverters by 180 degrees apart in switching frequency helps to reduce the harmonic components.

A Design of Current-mode Buck-Boost Converter using Multiple Switch with ESD Protection Devices (ESD 보호 소자를 탑재한 다중 스위치 전류모드 Buck-Boost Converter)

  • Kim, Kyung-Hwan;Lee, Byung-Suk;Kim, Dong-Su;Park, Won-Suk;Jung, Jun-Mo
    • Journal of IKEEE
    • /
    • v.15 no.4
    • /
    • pp.330-338
    • /
    • 2011
  • In this paper, a current-mode buck-boost converter using Multiple switching devices is presented. The efficiency of the proposed converter is higher than that of conventional buck-boost converter. In order to improve the power efficiency at the high current level, the proposed converter is controlled with PWM(pulse width modulation) method. The converter has maximum output current 300mA, input voltage 3.3V, output voltage from 700mV to 12V, 1.5MHz oscillation frequency, and maximum efficiency 90%. Moreover, this paper proposes watchdog circuits in order to ensure the reliability and to improve the performance of dc-dc converters. An electrostatic discharge(ESD) protection circuit for deep submicron CMOS technology is presented. The proposed circuit has low triggering voltage using gate-substrate biasing techniques. Simulated result shows that the proposed ESD protection circuit has lower triggering voltage(4.1V) than that of conventional ggNMOS(8.2V).

A Design of Three Switch Buck-Boost Converter (3개의 스위치를 이용한 벅-부스트 컨버터 설계)

  • Koo, Yong-Seo;Jung, Jun-Mo
    • Journal of IKEEE
    • /
    • v.14 no.2
    • /
    • pp.82-89
    • /
    • 2010
  • In this paper, a buck-boost converter using three DTMOS(Dynamic Threshold Voltage MOSFET) switching devices is presented. The efficiency of the proposed converter is higher than that of conventional buck-boost converter. DTMOS with low on-resistance is designed to decrease conduction loss. The threshold voltage of DTMOS drops as the gate voltage increases, resulting in a much higher current handling capability than standard MOSFET. In order to improve the power efficiency at the high current level, the proposed converter is controlled with PWM(pulse width modulation) method. The converter has maximum output current 300mA, input voltage 3.3V, output voltage from 700mV to 12V, 1.2MHz oscillation frequency, and maximum efficiency 90%. Moreover, the LDO(low drop-out) is designed to increase the converting efficiency at the standby mode below 1mA.

A CMOS Band-Pass Delta Sigma Modulator and Power Amplifier for Class-S Amplifier Applications (S급 전력 증폭기 응용을 위한 CMOS 대역 통과델타 시그마 변조기 및 전력증폭기)

  • Lee, Yong-Hwan;Kim, Min-Woo;Kim, Chang-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.1
    • /
    • pp.9-15
    • /
    • 2015
  • A CMOS band-pass delta-sigma modulator(BPDSM) and cascode class-E power amplifier have been developed CMOS for Class-S power amplifier applications. The BPDSM is operating at 1-GHz sampling frequency, which converts a 250-MHz sinusoidal signal to a pulse-width modulated digital signal without the quantization noise. The BPDSM shows a 25-dB SQNR(Signal to Quantization Noise Ratio) and consumes a power of 24 mW at an 1.2-V supply voltage. The class-E power amplifier exhibits an 18.1 dBm of the maximum output power with a 25% drain efficiency at a 3.3-V supply voltage. The BPDSM and class-E PA were fabricated in the Dongbu's 110-nm CMOS process.

Relation of Threshold Voltage and Scaling Theory for Double Gate MOSFET (DGMOSFET의 문턱전압과 스켈링 이론의 관계)

  • Jung, Hak-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.5
    • /
    • pp.982-988
    • /
    • 2012
  • This paper has presented the relation of scaling theory and threshold voltage of double gate(DG) MOSFET. In the case of conventional MOSFET, current and switching frequency have been analyzed based on scaling theory. To observe the possibility of application of scaling theory for threshold voltage of DGMOSFET, the change of threshold voltage has been observed and analyzed according to scaling theory. The analytical potential distribution of Poisson equation has been used, and this model has been already verified. To solve Poisson equation, charge distribution such as Gaussian function has been used. As a result, it has been observed that threshold voltage is grealty changed according to scaling factor and change rate of threshold voltages is traced for scaling of doping concentration in channel. This paper has explained for the best modified scaling theory reflected the influence of two gates as using weighting factor when scaling theory has been applied for channel length and channel thickness.

Single Core Push Pull Forward Converter Operational Characteristics (싱글 코어 푸시풀 포워드 컨버터 동작특성)

  • Kim Chang-Sun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.592-597
    • /
    • 2005
  • The push pull forward converter is suitable in a low output voltage, a high output current applications with wide input voltage ranges. All magnetic components including output inductor, transformer and input filter can be integrated into single EI/EE core. The integrated push pull forward converter is considered through the comparison of efficiency according to the circuit parameters. The Nicera company's 5M FEE18/8/10C and NC-2H FEI32/8/20 cores are used for the transformer. The integrated push pull forward converter ratings are of $36\~72V$ input and 3.3V/30A output. In case that NC-2H FEI32/8/20 core used in the converter, the efficiency is measured up to $83.5\%$ at the switching frequency 200 kHz and the 11A load. The efficiencies of $76.4\%$ at a full load and $82.95\%$ at a half load are measured.

A Study On High Power Factor Sine Pulse Type Power Supply For Atmospheric Pressure Plasma Cleaning System with 3-Phase PFC Boost Converter (3상 PFC 부스트 컨버터를 채용한 상압플라즈마 세정기용 고역률 정형파 펄스 출력형 전원장치에 관한 연구)

  • Han, Hee-Min;Kim, Min-Young;Seo, Kwang-Duk;Kim, Joohn-Sheok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.72-81
    • /
    • 2009
  • This paper presents quasi-resonant type high power factor ac power supply for atmospheric pressure plasma cleaning system adopting three phase PFC boost converter and it's control method. The presented ac power supply consists of single phase H-bridge inverter, step-up transformer for generating high voltage and three phase PFC boost converter for high power factor on source utility. Unlikely to the traditional LC resonant converter, the propose one has an inductor inside only. A single resonant takes place through the inside inductor and the capacitor from the plasma load modeled into two series capacitor and one resistance. The quasi-resonant can be achieved by cutting the switching signal when the load current decrease to zero. To obtain power control ability, the propose converter controlled by two control schemes. One is the changing output pulse period scheme in the manner of PFM(Pulse Frequency Modulation) control. On the other, to provide more higher power to load, the DC rail voltage is directly controlled by the 3-phase PFC boost converter. The significant merits of the proposed converter are the uniform power providing capability for high quality plasma generation and low reactive power in AC and DC side. The proposed work is verified through digital simulation and experimental implementation.