• 제목/요약/키워드: swing-up control

검색결과 60건 처리시간 0.033초

Anomalous Phenomena on Subthreshold Characteristics of SOI MOSFET Back Gate Voltage

  • Lee, Seung-Min;Lee, Mike-Myung-Ok
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1998년도 추계종합학술대회 논문집
    • /
    • pp.553-556
    • /
    • 1998
  • The 1-D numerical model and its extraction methodology are suggested and these simulation results for the S-swing as a function of back-gate voltage are well matched with the measured. S-swing characteristics are analyzed using PD-SOI devices with enough deeper regions up to substrates. The PD-SOI device doesn't have to be short channel to see the anomalous subthreshold phenomena based on the back gate bias. This results recommend to operate better SOI device performances by controlling the back gate voltages. So SOI performances will be much optimistic with proper control of the back-gate voltage for the already- proven- high- performance (APHP) SOI VLSIs.

  • PDF

Clinical Feasibility of Wearable Robot Orthosis on Gait and Balance Ability for Stroke Rehabilitation: A Case Study

  • Shin, Young-Il;Yang, Seong-Hwa;Kim, Jin-Young
    • The Journal of Korean Physical Therapy
    • /
    • 제27권2호
    • /
    • pp.124-127
    • /
    • 2015
  • Purpose: The emphasis on gait rehabilitation after stroke depends on training support through the lower limbs, balance of body mass over the changing base of support. However, muscle weakness, lack of control of lower limb, and poor balance can interfere with training after stroke. For this case study report, a wearable robot orthosis was applied to stroke patients in order to verify its actual applicability on balance and gait ability in the clinical field. Methods: Two stroke patients participated in the training using the wearable robot orthosis. Wearable robot orthosis provides patient-initiated active assistance contraction during training. Training includes weight shift training, standing up and sitting down, ground walking, and stair up and down Training was applied a total of 20 times, five times a week for 4 weeks, for 30 minutes a day. Gait ability was determined by Stance phase symmetry profile, Swing phase symmetry profile, and velocity using the GAITRite system. Balance ability was measured using the Biodex balance system. Results: Subjects 1, 2 showed improved gait and balance ability with mean individual improvement of 72.4% for velocity, 19.4% for stance phase symmetry profile, 9.6% for swing phase symmetry profile, and 13.6% for balance ability. Conclusion: Training utilizing a wearable robot orthosis can be useful for improvement of the gait and balance ability of stroke patients.

진자 흔들기 퍼지 제어기가 추가된 가상모델 제어 2족 곡예로봇 자세 균형 제어 (Virtual Model Control of a Posture Balancing Biped Acrobatic Robot with Fuzzy Control for Pendulum Swing Motion Generation)

  • 이병수
    • 제어로봇시스템학회논문지
    • /
    • 제7권11호
    • /
    • pp.904-911
    • /
    • 2001
  • A broomstick swinging biped acrobatic controller is designed and simulated to show capability of the system of controllers: virtual model controller is employed for the robot\`s posture balancing control while a higher level fuzzy controller modulate the one of the virtual model controller\`s parameter for the pendulum swinging motion generation. The robot is of 7 degree-of-freedom, 8-link planar bipedal robot having two slim legs and a body. Each leg consists of a hip joint, a knee joint, an ankle joint and the body has a free joint at the top in the head at which a freely rotating broomstick is attached. We assume that the goal for the acrobat robot is to maintain a body balance in the sagittal plane while swinging up the freely up the freely rotating pendulum. We also assume that the actuators in the joints are all ideal torque generators. The proposed system of controllers satisfies the goal and the simulation results are presented.

  • PDF

도립진자의 스윙-엎 제어를 위한 적응형 소속함수를 갖는 퍼지제어기 설계 (Design of the Fuzzy Controller with Adaptive Membership Function to Inverted Pendulum Swing-up Control)

  • 신자호;홍대승;유창완;임화영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.2492-2494
    • /
    • 2000
  • Design of Fuzzy cotroller consists of intuition of human expert, and any other information about how to control system. If the rules adequately control the system, the design work is done well. If the rules are inadequate, the designer must modify the rules. Through this procedure, the system can be controlled. In this paper, we designed simply a fuzzy controller based on human knowledge, but it has errors showing some vibrations. So we updated the optimal parameters of fuzzy controller using Neural Network algorithm.

  • PDF

차량 엔진용 전자기식 밸브의 모델링 및 제어기 설계 (Modelling and Controller Design of Electro-Magnetic Valve for Vehicle Engine)

  • 정영석
    • 동력기계공학회지
    • /
    • 제6권4호
    • /
    • pp.81-87
    • /
    • 2002
  • The modelling and controller design of the EMV(electro-magnetic valve) for vehicle engine are considered in this paper. For the analysis and controller design, the governing equation of the EMV system is derived. For a good performance of the system, the start control, the holding control and the swing control are included in the controller design of the EMV system. In order to reduce landing speed of the valve, the on-time delay control which mainly come from the optimal control theory is employed. In order to reduce the power consumption of the system, the pick-up and hold operation has been used for the magnetic coil. The simulation and experimental results are presented to show the validity of the control method.

  • PDF

PZT를 이용한 광 정보저장기기용 엑츄에이터의 추적제어 (Track following control of optical pick-up actuator using PZT)

  • 이우철;양현석;박노철;박영필
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.664-669
    • /
    • 2003
  • This paper proposes a swing-arm type dual-stage actuator, which consists of a PZT actuator for fine motion and a VCM(Voice Coil Motor) for coarse motion, for SFF ODD(Small Form Factor Optical Disk Drive), in order to achieve fast access speed and precise track following control. We focus our attention on the design and control of the PZT actuator, because there have been a lot of previous researches related to the VCM and dual-stage actuators. Due to the dual cantilever structure, the PZT actuator can generate precise translational tracking motion at its tip where optical pickup is attached at, and the effect of hysteric behavior of the PZT element is reduced. The dynamic model of the PZT actuator is derived by using the Hamilton's principle, and verified by comparing with the experimental frequency response. The sliding mode control is designed in order to be robust against modeling uncertainties. Simulations and experimental results confirm the effectiveness of the suggested control scheme.

  • PDF

Indirect Adaptive Regulator Design Based on TSK Fuzzy Models

  • Park Chang-Woo;Choi Jun-Hyuk;Sung Ha-Gyeong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제6권1호
    • /
    • pp.52-57
    • /
    • 2006
  • In this paper, we have proposed a new adaptive fuzzy control algorithm based on Takagi-Sugeno fuzzy model. The regulation problem for the uncertain SISO nonlinear system is solved by the proposed algorithm. Using the advanced stability theory, the stability of the state, the control gain and the parameter approximation error is proved. Unlike the existing feedback linearization based methods, the proposed algorithm can guarantee the global stability in the presence of the singularity in the inverse dynamics of the plant. The performance of the proposed algorithm is demonstrated through the problem of balancing and swing-up of an inverted pendulum on a cart.

적응 퍼지추론 기법에 의한 도립진자의 안정화 제어 (Stabilization control of inverted pendulum by adaptive fuzzy inference technique)

  • 전부찬;심영진;이준탁
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.207-210
    • /
    • 1997
  • In this paper, a hierarchical fuzzy controller for stabilization of the inverted pendulum system is proposed. The facility of this hierarchical fuzzy controller which has a swing-up control mode and a stabilization one, moves a pendulum in an initial natural stable equilibrium point and a cart in arbitrary position to an unstable equilibrium point and a center of rail. Specially, the virtual equilibrium point (.PHI.$_{VEq}$ ) which describes functionally considers the interactive dynamics between a position of cart and a angle of inverted pendulum is introduced. And comparing with the convention optimal controller, the proposed hierarchical fuzzy inference made substantially the inverted pendulum system robust and stable.e.

  • PDF

자기동조 피지추론 기법에 의한 도립진자의 안정화 제어 (Stabilization Control of Inverted Pendulum by Self tuning Fuzzy Inference Technique)

  • 심영진;김태우;이오길;박영식;이준탁
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 추계학술대회 논문집 학회본부
    • /
    • pp.83-85
    • /
    • 1997
  • In this paper, a self-tunning fuzzy inference technique for stabilization of the inverted pendulum system is proposed. The facility of this self-tunning fuzzy controller which has swing-up control mode and a stabilization one, moves a pendulum in an initial natural stable equilibrium point and a cart in arbitrary position, to an unstable equilibrium point and a center of rail. Specially, the virtual equilibrium point(${\phi}_{VEq}$) which describes functionally considers the interactive dynamics between a position of cart and a angle of inverted pendulum is introduced. And comparing with the convention optimal controller, the proposed self-tunning fuzzy inference structure made substantially the inverted pendulum system robust and stable.

  • PDF

비선형 추가입력을 이용한 도립 진자의 부분 궤환 선형화 제어기 설계 (A partial feedback linearization control of inverted pendulum by using nonlinear additional input)

  • 김용준;염동회;최진영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 합동 추계학술대회 논문집 정보 및 제어부문
    • /
    • pp.58-62
    • /
    • 2002
  • This paper proposes a new nonlinear controller to swing-up an inverted pendulum system mounted on a car. This controller considers not only the pendulum but also the displacement of the cart. A single-input multi-output system is considered to control the inverted pendulum by using partial feedback linearization and nonlinear additional input. The asymptotic stability of the system is shown by using Lyapunov function. The simulation results show effectiveness of the proposed controller.

  • PDF