• 제목/요약/키워드: sustainability assessment

검색결과 267건 처리시간 0.031초

Assessment of Sustainable Production on Paddy Field Treated with Green Manure Crops Using Sustainability Index

  • Kim, Kwang Seop;Kim, Sook-Jin;Park, Ki Do;Lee, Choon-Woo;Ryu, Jin-Hee;Choi, Jong-Seo;Jeon, Weon-Tai;Kang, Hang-Won;Kim, Min-Tae
    • 한국토양비료학회지
    • /
    • 제47권3호
    • /
    • pp.165-171
    • /
    • 2014
  • Assessment of sustainable production on a cropland can help to determine the most proper management practices. In this study, we evaluated the sustainable production on paddy field treated with green manure crops using sustainability index which based on nutrient index, microbiological index, and crop index related to nutrient-supplying capacity. Especially choosing appropriate indicators from a minimum data set (MDS) were used the principal components analysis (SI-2) as well as expert opinion (SI-1) usually used in sustainability index. Six treatments including the two tillage treatments and two green manure crops were investigated as follows; (i) moldrotary + rotary tillage without green manure crop (Con), with (ii) hairy vetch (Con-HV), and (iii) hairy vetch + green barely (Con-HV+GB), (iv) rotary tillage without green manure crop (Rot), with (ii) hairy vetch (Rot-HV), and (iii) hairy vetch + green barly (Rot-HV+GB). Con-HV and Rot-HV in SI-1 were maintained sustainability while Rot-HV and Rot-HV+GB in SI-2. Especially, treatments (Con and Rot) without green manure crops were more unsustainable than with green manure crops because of the low value of microbiological and crop index than with green manure crops. Meanwhile, sustainability indices and grain yield had the high correlation values ($R^2=0.756$ and 0.928 in SI-1 and SI-2, respectively). These results meant that application of green manure crops such as hairy vetch could improve both yield and soil quality in paddy.

대안적 환경평가 시스템 연구: 통합적 의사결정을 위한 새로운 개념의 영향평가모형(APEMI IA MODEL)의 국내 적용방안 탐색 (A Study on the Alternative Environmental Assessment System in KOREA : Applying New Conceptual Model(APEMI IA MODEL) into Impact Assessment for Better Integrated Decision-Making)

  • 김임순;한상욱
    • 환경영향평가
    • /
    • 제14권4호
    • /
    • pp.179-193
    • /
    • 2005
  • As the world's attention turns to sustainability and the considerations of cumulative effects, the concept of Strategic Environmental Assessment(SEA) has become more significant and urgent and increasing number of countries and international organizations now undertake some forms of SEA. The term SEA, however, is variously defined and understood; generally it means a formal process of systematic analysis of the environmental effects on development policies, plans, programmes and other proposed strategic actions. This process extends the aims and principles of EIA upstream in the decision-making process, beyond the project level in which major alternatives are still open. There is a shift toward more integrative approaches and greater use of Environmental Impact Assessment (EIA) and Strategic Environmental Assessment (SEA) as sustainability tools in cooperation with Environmental Management System (EMS). Currently, Korea has EIA system and Prior Environmental Review System (PERS) which is different type of SEA as Environment Assessment (EA) system. APEMI IA MODEL integrated following three pillar(refer to attached figure.1) ; First pillar symbolized decision making cycle with planning process. Second pillar symbolized integrated assessment which tying SEA and EIA with specific impacts assessment(eg: social impact assessment, economic impact assessment, health impact assessment etc) in cooperation with EMS. Third pillar symbolized EA best practical procedure of International Association for Impact Assessment(IAIA). Considering the above, we applied new conceptual model(APEMI IA MODEL) into Impact Assessment for better integrated decision-making in KOREA as an alternative IA system(IS IA MODEL A and B refer to attached figure 4, 5).

Hydrogen production in the light of sustainability: A comparative study on the hydrogen production technologies using the sustainability index assessment method

  • Norouzi, Nima
    • Nuclear Engineering and Technology
    • /
    • 제54권4호
    • /
    • pp.1288-1294
    • /
    • 2022
  • Hydrogen as an environmentally friendly energy carrier has received special attention to solving uncertainty about the presence of renewable energy and its dependence on time and weather conditions. This material can be prepared from different sources and in various ways. In previous studies, fossil fuels have been used in hydrogen production, but due to several limitations, especially the limitation of the access to this material in the not-too-distant future and the great problem of greenhouse gas emissions during hydrogen production methods. New methods based on renewable and green energy sources as energy drivers of hydrogen production have been considered. In these methods, water or biomass materials are used as the raw material for hydrogen production. In this article, after a brief review of different hydrogen production methods concerning the required raw material, these methods are examined and ranked from different aspects of economic, social, environmental, and energy and exergy analysis sustainability. In the following, the current position of hydrogen production is discussed. Finally, according to the introduced methods, their advantages, and disadvantages, solar electrolysis as a method of hydrogen production on a small scale and hydrogen production by thermochemical method on a large scale are introduced as the preferred methods.

기후변화 시나리오를 고려한 농업용 저수지의 미래 용수공급 지속가능성 전망 (Projection of Future Water Supply Sustainability in Agricultural Reservoirs under RCP Climate Change Scenarios)

  • 남원호;홍은미;김태곤;최진용
    • 한국농공학회논문집
    • /
    • 제56권4호
    • /
    • pp.59-68
    • /
    • 2014
  • Climate change influences multiple environmental aspects, certain of which are specifically related to agricultural water resources such as water supply, water management, droughts and floods. Understanding the impact of climate change on reservoirs in relation to the passage of time is an important component of water resource management for stable water supply maintenance. Changes on rainfall and hydrologic patterns due to climate change can increases the occurrence of reservoir water shortage and affect the future availability of agricultural water resources. It is a main concern for sustainable development in agricultural water resources management to evaluate adaptation capability of water supply under the future climate conditions. The purpose of this study is to predict the sustainability of agricultural water demand and supply under future climate change by applying an irrigation vulnerability assessment model to investigate evidence of climate change occurrences at a local scale with respect to potential water supply capacity and irrigation water requirement. Thus, it is a recommended practice in the development of water supply management strategies on reservoir operation under climate change.

Design optimization for analysis of surface integrity and chip morphology in hard turning

  • Dash, Lalatendu;Padhan, Smita;Das, Sudhansu Ranjan
    • Structural Engineering and Mechanics
    • /
    • 제76권5호
    • /
    • pp.561-578
    • /
    • 2020
  • The present work addresses the surface integrity and chip morphology in finish hard turning of AISI D3 steel under nanofluid assisted minimum quantity lubrication (NFMQL) condition. The surface integrity aspects include microhardness, residual stress, white layer formation, machined surface morphology, and surface roughness. This experimental investigation aims to explore the feasibility of low-cost multilayer (TiCN/Al2O3/TiN) coated carbide tool in hard machining applications and to assess the propitious role of minimum quantity lubrication using graphene nanoparticles enriched eco-friendly radiator coolant based nano-cutting fluid for machinability improvement of hardened steel. Combined approach of central composite design (CCD) - analysis of variance (ANOVA), desirability function analysis, and response surface methodology (RSM) have been subsequently employed for experimental investigation, predictive modelling and optimization of surface roughness. With a motivational philosophy of "Go Green-Think Green-Act Green", the work also deals with economic analysis, and sustainability assessment under environmental-friendly NFMQL condition. Results showed that machining with nanofluid-MQL provided an effective cooling-lubrication strategy, safer and cleaner production, environmental friendliness and assisted to improve sustainability.

A Framework of Building Knowledge Representation for Sustainability Rating in BIM

  • Shahaboddin Hashemi Toroghi;Tang-Hung. Nguyen;Jin-Lee. Kim
    • 국제학술발표논문집
    • /
    • The 5th International Conference on Construction Engineering and Project Management
    • /
    • pp.437-443
    • /
    • 2013
  • Recently, sustainable building design, a growing field within architectural design, has been emerged in the construction industry as the practice of designing, constructing, and operating facilities in such a manner that their environmental impact, which has become a great concern of construction professionals, can be minimized. A number of different green rating systems have been developed to help assess that a building project is designed and built using strategies intended to minimize or eliminate its impact on the environment. In the United States, the widely accepted national standards for sustainable building design are known as the LEED (Leadership in Energy and Environmental Design) Green Building Rating System. The assessment of sustainability using the LEED green rating system is a challenging and time-consuming work due to its complicated process. In effect, the LEED green rating system awards points for satisfying specified green building criteria into five major categories: sustainable sites, water efficiency, energy and atmosphere, materials and resources, and indoor environmental quality; and sustainability of a project is rated by accumulating scores (100 points maximum) from these five major categories. The sustainability rating process could be accelerated and facilitated by using computer technology such as BIM (Building Information Modeling), an innovative new approach to building design, engineering, and construction management that has been widely used in the construction industry. BIM is defined as a model-based technology linked with a database of project information, which can be accessed, manipulated, and retrieved for construction estimating, scheduling, project management, as well as sustainability rating. This paper will present a framework representing the building knowledge contained in the LEED green building criteria. The proposed building knowledge framework will be implemented into a BIM platform (e.g. Autodesk Revit Architecture) in which sustainability rating of a building design can be automatically performed. The development of the automated sustainability rating system and the results of its implementation will be discussed.

  • PDF

안전 및 환경을 고려한 통합 지속 가능 경영 시스템의 구축 (Construction of Integrated Sustainable Management System Considering Safety and Environment)

  • 최성운
    • 대한안전경영과학회지
    • /
    • 제7권2호
    • /
    • pp.153-161
    • /
    • 2005
  • This paper is to construct the integrated sustainable management (ISM) system. This research focuses on the intergration of two concepts - balanced scorecard management system and the three pillars of sustainability. The system certification, product certification, innovation and participation tools are considered in constitutional elements for ISM system. Finally, this paper proposes the causal analysis, the third assessment, reporting for ISM system.

지속가능한 개발 지표 도출을 위한 기본적 구성 (Framework for Developing of Sustainable Indicators)

  • 정용;김용범
    • 환경영향평가
    • /
    • 제5권2호
    • /
    • pp.79-91
    • /
    • 1996
  • In Chapter 40, "Information for decision-making", of Agenda 21, it was Slated that, "indicators of sustainable development need to be developed to provide solid bases for decision-making at all levels and to contribute to a self-regulating sustainability of integrated environment and development systems." Sustainable development has been defined as "development that meets the needs of the present without compromising the ability of future generations to meet their own needs", An indicator that measures sustainability should therefore focus on this definition. One of the most widely used frameworks for environmental indicators is the Pressure-State-Response model proposed by the OECD. And we introduced the the Driving force-State-Response framework, the adaptation of Pressure-State-Response model, for UN sustainable development indicators. Therefore, in our country, indicators for sustainable development should be developed by using the DSR framework.

  • PDF

The Economic Consistency and the Creditworthiness of Borrower: the Methodical Features of Analysis Using the Concentric Matrix Models

  • VYBOROVA, Elena Nikolaevna
    • 동아시아경상학회지
    • /
    • 제8권4호
    • /
    • pp.45-65
    • /
    • 2020
  • Purpose - This paper is to analyze the system and the models of financial analysis in the assessment of economic consistency and the creditability of borrower. To test the process of complex express-analysis, it is utilized by the concentric matrix models by using the matrix of 5×5.. Research design, data, and methodology - The estimation of economic consistency, the creditworthiness, the complex express-analysis with application of concentric matrix models were carried out on the basis of data of the report for the 2017 of corporations POSCO and in the first half of the 2018 Daewoo Shipbuilding & Marine Engineering of South Korea. Results - This paper focused on the unbalance of the corporate financial structure (capital, receivable) and the assessment of sustainability development, taking into account the liquidity, solvency, financial sustainability and economic viability of the enterprise. Conclusions - this paper also consider the theoretical means of regulating receivables. The material is presented in the pedagogical context and appendix of the conclusion.

Environmental assessment of a BIPV system

  • Demetrios N. Papadopoulos;Constantinos N. Antonopoulos;Vagelis G. Papadakis
    • Advances in Energy Research
    • /
    • 제8권1호
    • /
    • pp.1-19
    • /
    • 2022
  • The application of Photovoltaic (PV) power in the building sector, is expanding as part of the ongoing energy transition into renewables. The article addresses the question of sustainability of energy generated from PVs through an environmental assessment of a building-integrated PV system (BIPV) connected to the grid through net metering. Employing retrospective life cycle analysis (LCA), with the CCaLC2 software and ecoinvent data, the article shows that the carrying structure and other balance of system (BOS) components are responsible for a three times higher energy payback time than the literature average. However, total environmental impact can be lowered through reuse or reinstallation of PVs on the same building structure after the 30-year interval. Further ways to improve environmental efficiency include identifying the most polluting materials for each LCA parameter. The results of this study are of interest to researchers and producers of PVs and organizations investing and promoting decentralized power production through PVs.