Browse > Article
http://dx.doi.org/10.12989/sem.2020.76.5.561

Design optimization for analysis of surface integrity and chip morphology in hard turning  

Dash, Lalatendu (Department of Production Engineering, Veer Surendra Sai University of Technology)
Padhan, Smita (Department of Production Engineering, Veer Surendra Sai University of Technology)
Das, Sudhansu Ranjan (Department of Production Engineering, Veer Surendra Sai University of Technology)
Publication Information
Structural Engineering and Mechanics / v.76, no.5, 2020 , pp. 561-578 More about this Journal
Abstract
The present work addresses the surface integrity and chip morphology in finish hard turning of AISI D3 steel under nanofluid assisted minimum quantity lubrication (NFMQL) condition. The surface integrity aspects include microhardness, residual stress, white layer formation, machined surface morphology, and surface roughness. This experimental investigation aims to explore the feasibility of low-cost multilayer (TiCN/Al2O3/TiN) coated carbide tool in hard machining applications and to assess the propitious role of minimum quantity lubrication using graphene nanoparticles enriched eco-friendly radiator coolant based nano-cutting fluid for machinability improvement of hardened steel. Combined approach of central composite design (CCD) - analysis of variance (ANOVA), desirability function analysis, and response surface methodology (RSM) have been subsequently employed for experimental investigation, predictive modelling and optimization of surface roughness. With a motivational philosophy of "Go Green-Think Green-Act Green", the work also deals with economic analysis, and sustainability assessment under environmental-friendly NFMQL condition. Results showed that machining with nanofluid-MQL provided an effective cooling-lubrication strategy, safer and cleaner production, environmental friendliness and assisted to improve sustainability.
Keywords
hard turning; AISI $D_3$ steel; NFMQL; surface integrity; chip morphology; economic analysis; sustainability assessment;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Asilturk, I. (2012), "Predicting surface roughness of hardened AISI 1040 based on cutting parameters using neural networks and multiple regression", J. Adv. Manufact. Technol., 63(1-4), 249-257. https://doi.org/10.1007/s00170-012-3903-z   DOI
2 Elmunafi, M.H.S., Mohd Yusof, N. and Kurniawan, D. (2015), "Effect of cutting speed and feed in turning hardened stainless steel using coated carbide cutting tool under minimum quantity lubrication using castor oil", Adv. Mech. Eng., 7(8), 1-7. https://doi.org/10.1177/1687814015600666   DOI
3 Khan, A. M., Jamil, M., Mia, M., He, N., Zhao, W. and Gong, L. (2020b), "Sustainability-based performance evaluation of hybrid nanofluid assisted machining", J. Cleaner Product., 257, 120541 https://doi.org/10.1016/j.jclepro.2020.120541   DOI
4 Kumar, R., Sahoo, A.K., Mishra, P.C. and Das, R.K. (2018), "Measurement and machinability study under environmentally conscious spray impingement cooling assisted machining", Measurement, 135, 913-927. https://doi.org/10.1016/j.measurement.2018.12.037   DOI
5 Kumar, R., Sahoo, A.K., Mishra, P.C. and Das, R.K. (2018), "Comparative investigation towards machinability improvement in hard turning using coated and uncoated carbide inserts: part I experimental investigation", Adv. Manufacturing, 6(1), 52-70. https://doi.org/10.1007/s40436-018-0215-z   DOI
6 Chinchanikar, S. and Choudhury, S.K. (2014), "Hard turning using HiPIMS-coated carbide tools: Wear behavior under dry and minimum quantity lubrication (MQL)", Measurement, 55, 536-548. https://doi.org/10.1016/j.measurement.2014.06.002   DOI
7 Costa, N.R., Lourenco, J. and Pereira, Z.L. (2011), "Desirability function approach: A review and performance evaluation in adverse conditions", Chemometrics Intelligent Lab. Syst., 107(2), 234-244. https://doi.org/10.1016/j.chemolab.2011.04.004   DOI
8 Gaitonde, V. N., Karnik, S. R., Figueira, L. and Davim, J. P. (2009b), "Analysis of Machinability During Hard Turning of Cold Work Tool Steel (Type: AISI D2)", Mater. Manufact. Processes, 24(12), 1373-1382. https://doi.org/10.1080/10426910902997415   DOI
9 Fnides, B., Aouici, H., Elbah, M., Boutabba, S. and Boulanouar, L. (2015), "Comparison between mixed ceramic and reinforced ceramic tools in terms of cutting force components modelling and optimization when machining hardened steel AISI 4140 (60 HRC)", Mech. Industry, 16(6), 609. https://doi.org/10.1051/meca/2015036   DOI
10 Gaitonde, V. N., Karnik, S. R., Figueira, L. and Paulo Davim, J. (2009a), "Machinability investigations in hard turning of AISI D2 cold work tool steel with conventional and wiper ceramic inserts", J. Refractory Metals Hard Mater., 27(4), 754-763. https://doi.org/10.1016/j.ijrmhm.2008.12.007   DOI
11 Hessainia, Z., Belbah, A., Yallese, M.A., Mabrouki, T. and Rigal, J.F. (2013), "On the prediction of surface roughness in the hard turning based on cutting parameters and tool vibrations", Measurement, 46(5), 1671-1681. https://doi.org/10.1016/j.measurement.2012.12.016   DOI
12 Keblouti, O., Boulanouar, L., Azizi, M.A. and Yallese, M.A. (2017), "Effects of coating material and cutting parameters on the surface roughness and cutting forces in dry turning of AISI 52100 steel", Struct. Eng. Mech., 61(4), 519-526. https://doi.org/10.12989/sem.2017.61.4.519   DOI
13 More, A.S, Jiang, W., Brown, W.D. and Malshe, A.P. (2006), "Tool wear and machining performance of CBN-TiN coated carbide inserts and PCBN compact inserts in turning AISI 4340 hardened steel", J. Mater. Process Technol., 180(1-3), 253-262. https://doi.org/10.1016/j.jmatprotec.2006.06.013   DOI
14 Das, S.R., Dhupal, D. and Kumar, A. (2015), "Experimental investigation into machinability of hardened AISI 4140 steel using TiN coated ceramic tool", Measurement, 62, 108-126. https://doi.org/10.1016/j.measurement.2014.11.008   DOI
15 Das, S.R., Kumar, A. and Dhupal, D. (2015), "Surface roughness analysis of hardened steel using TiN coated ceramic inserts", J. Machining Machinability Mater., 17(1), 22-38. https://dx.doi.org/10.1504/IJMMM.2015.069217   DOI
16 Elbah, M., Laouici, H., Benlahmidi, S., Nouioua, M. and Yallese, M.A. (2019), "Comparative assessment of machining environments (dry, wet and MQL) in hard turning of AISI 4140 steel with CC6050 tools", J. Adv. Manufact. Technol., 105, 2581-2597. https://doi.org/10.1007/s00170-019-04403-9   DOI
17 Mia, M. and Dhar, N.R. (2019), "Prediction and optimization by using SVR, RSM and GA in hard turning of tempered AISI 1060 steel under effective cooling condition", Neural Comput. Appl., 31, 2349-2370. https://doi.org/10.1007/s00521-017-3192-4   DOI
18 Mia, M., Morshed, M.S., Kharshiduzzaman, M., Razi, M.H., Mostafa, M.R., Rahman, S.M.S. and Kamal, A.M. (2018), "Prediction and optimization of surface roughness in minimum quantity coolant lubrication applied turning of high hardness steel", Measurement, 118, 43-51. https://doi.org/10.1016/j.measurement.2018.01.012   DOI
19 Mia, M., Gupta, M.K., Singh, G., Krolczyk, G. and Pimenov, D.Y. (2018), "An approach to cleaner production for machining hardened steel using different cooling-lubrication conditions", J. Cleaner Product., 187, 1069-1081. https://doi.org/10.1016/j.jclepro.2018.03.279   DOI
20 Mia, M., Gupta, M.K., Pruncu, C.I., Sen, B., Khan, A.M., Jamil, M., Faraz, S., Asef, S., Imran, G.M.S. and Rahman, M.A. (2020), "Six sigma optimization of multiple machining characteristics in hard turning under dry, flood, MQL and solid lubrication", J. Production Syst. Manufact. Sci., 1(1), 1-12.
21 Naresh Babu, M., Anandan, V., Muthukrishnan, N., Arivalagar, A. A. and Dinesh Babu, M. (2019), "Evaluation of graphene based nano fluids with minimum quantity lubrication in turning of AISI D3 steel", SN Appl. Sci., 1(10), 1-11. https://doi.org/10.1007/s42452-019-1182-0   DOI
22 Das, A., Patel, S.K., Hotta, T.K. and Biswal, B.B. (2018), "Statistical analysis of different machining characteristics of EN-24 alloy steel during dry hard turning with multilayer coated cermet inserts", Measurement, 134, 123-141. https://doi.org/10.1016/j.measurement.2018.10.065   DOI
23 Saini, S., Ahuja, I.S. and Sharma, V.S. (2012), "Modelling the effects of cutting parameters on residual stresses in hard turning of AISI H11 tool steel", J. Adv. Manufact. Technol., 65(5-8), 667-678. https://doi.org/10.1007/s00170-012-4206-0   DOI
24 Tang, L., Yin, J., Sun, Y., Shen, H. and Gao, C. (2017), "Chip formation mechanism in dry hard high-speed orthogonal turning of hardened AISI D2 tool steel with different hardness levels", J. Adv. Manufact. Technol., 93(5-8), 2341-2356. https://doi.org/10.1007/s00170-014-6484-1   DOI
25 Abbas, A.T., Gupta, M.K., Soliman, M.S., Mia, M., Hegab, H., Luqman, M. and Pimenov, D.Y. (2019), "Sustainability assessment associated with surface roughness and power consumption characteristics in nanofluid MQL-assisted turning of AISI 1045 steel", J. Adv. Manufact. Technol., 105, 1311-1327. https://doi.org/10.1007/s00170-019-04325-6   DOI
26 Aouici, H., Khellaf, A., Smaiah, S., Elbah, M., Fnides, B. and Yallese, M.A. (2017), "Comparative assessment of coated and uncoated ceramic tools on cutting force components and tool wear in hard turning of AISI H11 steel using Taguchi plan and RMS", Sadhana, 42(12), 2157-2170. https://doi.org/10.1007/s12046-017-0746-1   DOI
27 Aouici, H., Elbah, M., Benkhelladi, A., Fnides, B., Boulanouar, L. and Yallese, M.A. (2019), "Comparison on various machinability aspects between mixed and reinforced ceramics when machining hardened steels", Mech. Industry, 20, 109. https://doi.org/10.1051/meca/2018052   DOI
28 Asilturk, I. and Akkus, H. (2011), "Determining the effect of cutting parameters on surface roughness in hard turning using the Taguchi method", Measurement, 44, 1697-1704. https://doi.org/10.1016/j.measurement.2011.07.003   DOI
29 Khan, Z.A., Shihab, S.K. and Siddiquee, A.N. (2015), "Analysis of chip morphology in dry hard turning of AISI 52100 alloy steel using RSM", J. Machining Machinability Mater., 17(6), 481-506. https://doi.org/10.1504/IJMMM.2015.073720   DOI
30 Khan, A. M., Gupta, M. K., Hegab, H., Jamil, M., Mia, M., He, N., Song, Q., Liu, Z. and Pruncu, C. I. (2020a), "Energy-Based Cost Integrated Modelling and Sustainability Assessment of Al-GnP Hybrid Nanofluid Assisted Turning of AISI52100 Steel", J. Cleaner Product., 257, 120502. https://doi.org/10.1016/j.jclepro.2020.120502   DOI
31 Das, A., Tirkey, N., Patel, S.K., Das, S.R. and Biswal, B.B. (2018), "A Comparison of Machinability in Hard Turning of EN-24 Alloy Steel Under Mist Cooled and Dry Cutting Environments with a Coated Cermet Tool", J. Failure Analysis Prevention, 19, 115-130. https://doi.org/10.1007/s11668-018-0574-6   DOI
32 Davim, J. P. and Figueira, L. (2007), "Machinability evaluation in hard turning of cold work tool steel (D2) with ceramic tools using statistical techniques", Mater. Design, 28(4), 1186-1191. https://doi.org/10.1016/j.matdes.2006.01.011   DOI
33 Davim, J. P. (2011), Machining of Hard Materials, SpringerVerlag London, London, United Kingdom
34 Davim, J. P. (2019), Machining Fundamentals and Recent Advances, Springer-Verlag London, London, United Kingdom
35 Elbah, M., Yallese, M.A., Aouici, H., Mabrouki, T. and Rigal, J.F. (2013), "Comparative assessment of wiper and conventional ceramic tools on surface roughness in hard turning AISI 4140 steel", Measurement, 46(9), 3041-3056. https://doi.org/10.1016/j.measurement.2013.06.018   DOI
36 Mia, M. and Dhar, N.R. (2016), "Prediction of surface roughness in hard turning under high pressure coolant using Artificial Neural Network", Measurement, 92, 464-474. https://doi.org/10.1016/j.measurement.2016.06.048   DOI
37 Bensouilah, H., Aouici, H., Meddour, I., Yallese, M.A., Mabrouki, T. and Girardin, F. (2016), "Performance of coated and uncoated mixed ceramic tools in hard turning process", Measurement, 82, 1-18. https://doi.org/10.1016/j.measurement.2015.11.042   DOI
38 Kumar, P., Chauhan, S., Pruncu, C., Gupta, M., Pimenov, D., Mia, M. and Gill, H. (2019), "Influence of Different Grades of CBN Inserts on Cutting Force and Surface Roughness of AISI H13 Die Tool Steel during Hard Turning Operation", Materials, 12(1), 177. https://doi.org/10.3390/ma12010177   DOI
39 Mhamdi, M.B., Salem, S.B., Boujelbene, M. and Bayraktar, E. (2013), "Experimental study of the chip morphology in turning hardened AISI D2 steel", J. Mech. Sci. Technol., 27(11), 3451-3461. https://doi.org/10.1007/s12206-013-0869-1   DOI
40 Mia, M. and Dhar, N.R. (2017), "Modeling of Surface Roughness Using RSM, FL and SA in Dry Hard Turning", Arabian J. Sci. Eng., 43(3), 1125-1136. https://doi.org/10.1007/s13369-017-2754-1   DOI
41 Mia, M., Razi, M.H., Ahmad, I., Mostafa, R., Rahman, S.M.S., Ahmed, D.H., and Dhar, N.R. (2017), "Effect of time-controlled MQL pulsing on surface roughness in hard turning by statistical analysis and artificial neural network", J. Adv. Manufact. Technol., 91(9-12), 3211-3223. https://doi.org/10.1007/s00170-016-9978-1   DOI
42 Shihab, S.K., Khan, Z.A., Mohammad, A. and Siddiquee, A.N. (2014), "Optimization of surface integrity in dry hard turning using RSM", Sadhana, 39(5), 1035-1053. https://doi.org/10.1007/s12046-014-0263-4   DOI
43 Sahoo, A.K. and Sahoo, B. (2012), "Experimental investigations on machinability aspects in finish hard turning of AISI 4340 steel using uncoated and multilayer coated carbide inserts", Measurement, 45(8), 2153-2165. https://doi.org/10.1016/j.measurement.2012.05.015   DOI
44 Sharma, P., Sidhu, B.S. and Sharma, J. (2015), "Investigation of effects of nanofluids on turning of AISI D2 steel using minimum quantity lubrication", J. Cleaner Product., 108, 72-79. https://doi.org/10.1016/j.jclepro.2015.07.122   DOI
45 Shaw, M.C. (2005), Metal Cutting Principles, Oxford University Press, New York.
46 Shihab, S.K., Khan, Z.A., Mohammad, A. and Siddiquee, A.N. (2014), "Investigation of surface integrity during wet turning of hard alloy steel", J. Machining Machinability Mater., 16(1), 22-37. https://doi.org/10.1504/ijmmm.2014.063919   DOI
47 Suresh, R., Basavarajappa, S., Gaitonde, V.N. and Samuel, G.L. (2012), "Machinability investigations on hardened AISI 4340 steel using coated carbide insert", J. Refractory Metals Hard Mater., 33, 75-86. https://doi.org/10.1016/j.ijrmhm.2012.02.019   DOI
48 Panday, G., Ashraf, M.Z.I., Ibn Muneer, K., Hossain, K.S., Ashik, M.F.K. and Kamruzzaman, M. (2018), "Assessing near-dry lubrication (35 ml/h) performance in hard turning process of hardened (48 HRC) AISI 1060 carbon steel", J. Adv. Manufact. Technol., 99, 2045-2057. https://doi.org/10.1007/s00170-018-2629-y   DOI
49 Xiao, Z., Liao, X., Long, Z. and Li, M. (2016), "Effect of cutting parameters on surface roughness using orthogonal array in hard turning of AISI 1045 steel with YT5 tool", J. Adv. Manufact. Technol., 93(1-4), 273-282. https://doi.org/10.1007/s00170-016-8933-5   DOI
50 Nouioua, M., Yallese, M.A., Khettabi, R., Belhadi, S., Bouhalais, M.L. and Girardin, F. (2017), "Investigation of the performance of the MQL, dry, and wet turning by response surface methodology (RSM) and artificial neural network (ANN)", J. Adv. Manufact. Technol., 93(5-8), 2485-2504. https://doi.org/10.1007/s00170-017-0589-2   DOI
51 Panda, A., Sahoo, A.K. and Rout, A.K. (2016), "Investigations on surface quality characteristics with multi-response parametric optimization and correlations", Alexandria Eng. J., 55(2), 1625-1633. https://doi.org/10.1016/j.aej.2016.02.008   DOI
52 Panda, A., Das, S.R. and Dhupal, D. (2017), "Surface Roughness Analysis for Economical Feasibility Study of Coated Ceramic Tool in Hard Turning Operation", Process Integration Optimization for Sustainability, 1(4), 237-249. https://doi.org/10.1007/s41660-017-0019-9   DOI
53 Panda, A., Das, S.R. and Dhupal, D. (2020), "Machinability investigation and sustainability assessment in FDHT with coated ceramic tool", Steel Compos. Struct., 34(5), 681-698. https://doi.org/10.12989/scs.2020.34.5.681   DOI
54 Rashid, W.B., Goel, S., Davim, J.P. and Joshi, S.N. (2015), "Parametric design optimization of hard turning of AISI 4340 steel (69 HRC)", J. Adv. Manufact. Technol., 82(1-4), 451-462. https://doi.org/10.1007/s00170-015-7337-2   DOI
55 Tang, L., Gao, C., Huang, J., Shen, H. and Lin, X. (2014), "Experimental investigation of surface integrity in finish dry hard turning of hardened tool steel at different hardness levels", J. Adv. Manufact. Technol., 77(9-12), 1655-1669. https://doi.org/10.1007/s00170-014-6484-1   DOI
56 Suresh, R., Basavarajappa, S., Gaitonde, V.N., Samuel, G.L. and Davim, J.P. (2013), "State-of-the-art research in machinability of hardened steels", Proceedings of the Institution of Mechanical Engineers, Part B J. Eng. Manufact., 227(2), 191-209. https://doi.org/10.1177/0954405412464589   DOI