• Title/Summary/Keyword: surface-modification technology

Search Result 661, Processing Time 0.029 seconds

The effect of ultrasonic nano crystal surface modification for mitigation of the residual stress after weld inlay on the alloy 82/182 dissimilar metal welds of reactor vessel in/outlet nozzles (원자로 입출구 노즐 Alloy 82/182 이종금속 용접부 Weld Inlay 적용 후 초음파나노표면개질이 잔류응력 완화에 미치는 영향)

  • Cho, Hong Seok;Park, Ik Keun;Jung, Kwang Woon
    • Journal of Welding and Joining
    • /
    • v.33 no.2
    • /
    • pp.40-46
    • /
    • 2015
  • This study was performed to investigate the effect of ultrasonic nano crystal surface modification (UNSM) on residual stress mitigation after Weld Inlay repair for butt dissimilar metal weld with Alloy 82/182 in reactor vessel In/Outlet nozzle. As-welded and Weld Inlay specimens were made in accordance with design standard of ASME Code Case N-766, and two planes of their weld specimens were peened by the optimum UNSM process condition. Peening characteristics for weld specimens after UNSM treatment were evaluated by surface roughness and Vickers hardness test. And, residual stress for weld specimens developed from before and after UNSM treatment was measured and evaluated by instrumented indentation technique. Consequently, it was revealed that the mitigation of residual stress in weld metal after Weld Inlay repair of reactor vessel In/Outlet nozzle could be possible through UNSM treatment.

Effects of Preparation Conditions on Thermal and Electrical Properties of Oil-based Nanofluids for Transformer Application (변압기 냉각용 오일 기지 나노유체의 제조조건이 열 및 전기적 특성에 미치는 영향)

  • Choi, Cheol;Yoo, Hyun-Sung;Oh, Jae-Myung
    • Korean Journal of Materials Research
    • /
    • v.17 no.9
    • /
    • pp.493-499
    • /
    • 2007
  • Oil-based nanofluids were prepared by dispersing nonconducting fibrous $Al_2O_3$ and spherical AlN nanoparticles in transformer oil. In this study, the effects of wet grinding and surface modification of particles on thermal and electrical properties of nanofluids were investigated. Grinding experiments were conducted with high-speed bead mill and ultrasonic homogenizer and nanoparticles were surface modified by oleic acid and polyoxyethylene alkyl acid ester(PAAE) in n-hexane or transformer oil, at the same time. It is obvious that the combination of nanoparticle, dispersant and dispersion solvent is very important for the dispersity of nanofluids. For nanofluids containing 1.0vol.% AlN particles in transformer oil, the enhancement of thermal conductivity was 11.6% compared with pure transformer oil. However, the electric-insulating property of AlN nanofluids was very low due to used dispersant itself. Therefore, the effect of the dispersant on thermal/electrical/physical properties of the transformer oil should be considered before selecting a proper dispersant.

Recent progress on Performance Improvements of Thermoelectric Materials using Atomic Layer Deposition (원자층 증착법을 이용한 열전 소재 연구 동향)

  • Lee, Seunghyeok;Park, Tae Joo;Kim, Seong Keun
    • Journal of Powder Materials
    • /
    • v.29 no.1
    • /
    • pp.56-62
    • /
    • 2022
  • Atomic layer deposition (ALD) is a promising technology for the uniform deposition of thin films. ALD is based on a self-limiting mechanism, which can effectively deposit thin films on the surfaces of powders of various sizes. Numerous studies are underway to improve the performance of thermoelectric materials by forming core-shell structures in which various materials are deposited on the powder surface using ALD. Thermoelectric materials are especially relevant as clean energy storage materials due to their ability to interconvert between thermal and electrical energy by the Seebeck and Peltier effects. Herein, we introduce a surface and interface modification strategy based on ALD to control the performance of thermoelectric materials. We also discuss the properties of the interface between various deposition materials and thermoelectric materials.

Study on Quantitative Analysis of Wear Debris for Surface Modification Layers Ti(C,N) with Piston Ring on Diesel Engine Oil

  • Choi, Nag-Jung;Youn, Suk-Bum;Kim, Min-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.7
    • /
    • pp.1044-1051
    • /
    • 2009
  • During contact between surfaces, there is wear and the generation of wear. The particles contained in the lubricating oil carry detailed and important monitoring information about the condition of the machine. Therefore, this paper was undertaken for the Ferrography system of wear debris generated from a lubricated moving machine surface. The lubricating wear test was performed under different experimental conditions using the Falex wear test of the Pin and V-Block types by Ti(C,N) coated. It was shown from the test results that wear particle concentration(WPC), wear severity index(Is) and size distribution have come out all higher with increases in sliding friction time. With the Ferrogram thin leaf wear debris as well as ball and plate type wear particles were observed.

A Study on the Wear Resistance and Modification Condition for Laser Surface Modified Steel (레이저 표면개질강의 개질조건과 마멸저항에 관한 연구)

  • 옥철호
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.332-338
    • /
    • 1999
  • Surface hardening of plain carbon steel (SM$%C) by Laser are usually much finer and stronger than those of the base metals. The present study was undertaken to investigate the wear resistance and a processing parameters such as, power density, pulse width, defocusing distance, and molten depth for surface modification of plain carbon steel. The wear test was carried out under experimental condition using the wear test device, and in which the annular surfaces of wear test specimens as well as mating specimen of alumina ceramics(Al2O3) was rubbed in dry sliding condition. It is shown that molten depth and width depend on defocusing distance. The wear loss on variation of sliding speed was much in lower speed range below 0.2m/sec and in higher speed range above 0.7m/sec, but wear loss was little in intermediate speed range. It depends on oxidation speed and wear speed.

  • PDF

A Study on Development of Advanced Environmental-Resistant Materials Using Metal Ion Processing

  • Fujita Kazuhisa;Kim Hae-Ji
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.10
    • /
    • pp.1670-1679
    • /
    • 2006
  • The development of the oxidation, wear and corrosion resistant materials that could be used in severe environmental conditions is needed. The elementary technologies for surface modification include ion implantation and/or thin film coating. Furthermore, in order to develop ion implantation technique to the specimens with three-dimensional shapes, plasma-based ion implantation (PBII) techniques were investigated. As a result, it was found that the ion implantation and/or thin film coating used in this study were/was effective for improving the properties of materials, which include implantations of various kinds of ions into TiAl alloy, TiN films formed on surface of base material and coatings in high-temperature steam. The techniques proposed in this study provide useful information for all of the material systems required to use at elevated temperature. For the practical applications, several results will be presented along with laboratory test results.

Effect of aerodynamic modifications on the surface pressure patterns of buildings using proper orthogonal decomposition

  • Tse, K.T.;Chen, Zeng-Shun;Lee, Dong-Eun;Kim, Bubryur
    • Wind and Structures
    • /
    • v.32 no.3
    • /
    • pp.227-238
    • /
    • 2021
  • This study analyzed the pressure patterns and local pressure of tall buildings with corner modifications (recessed and chamfered corner) using wind tunnel tests and proper orthogonal decomposition (POD). POD can distinguish pressure patterns by POD mode and more dominant pressure patterns can be found according to the order of POD modes. Results show that both recessed and chamfered corners effectively reduced wind-induced responses. Additionally, unique effects were observed depending on the ratio of corner modification. Tall building models with recessed corners showed fluctuations in the approaching wind flow in the first POD mode and vortex shedding effects in the second POD mode. With large corner modification, energy distribution became small in the first POD mode, which shows that the effect of the first POD mode reduced. Among building models with chamfered corners, vortex shedding effects appeared in the first POD mode, except for the model with the highest ratio of corner modifications. The POD confirmed that both recessed and chamfered corners play a role in reducing vortex shedding effects, and the normalized power spectral density peak value of modes showing vortex shedding was smaller than that of the building model with a square section. Vortex shedding effects were observed on the front corner surfaces resulting from corner modification, as with the side surface. For buildings with recessed corners, the local pressure on corner surfaces was larger than that of side surfaces. Moreover, the average wind pressure was effectively reduced to 88.42% and 92.40% in RE1 on the windward surface and CH1 on the side surface, respectively.

Study on Surface Modification of Ti Substrate to Improve the Dispersion of Catalytic Metals on Synthesis of Carbon Nanotubes (탄소나노튜브 합성 시 촉매 금속의 분산도 향상을 위한 Ti Substrate의 표면 개질 연구)

  • Kwak, Seoung Yeol;Kim, Ho Gyu;Byun, Jong Min;Park, Ju Hyuk;Suk, Myung-Jin;Oh, Sung-Tag;Kim, Young Do
    • Journal of Powder Materials
    • /
    • v.21 no.1
    • /
    • pp.28-33
    • /
    • 2014
  • This paper describes the surface modification effect of a Ti substrate for improved dispersibility of the catalytic metal. Etching of a pure titanium substrate was conducted in 50% $H_2SO_4$, $50^{\circ}C$ for 1 h-12 h to observe the surface roughness as a function of the etching time. At 1 h, the grain boundaries were obvious and the crystal grains were distinguishable. The grain surface showed micro-porosities owing to the formation of micro-pits less than $1{\mu}m$ in diameter. The depths of the grain boundary and micro-pits appear to increase with etching time. After synthesizing the catalytic metal and growing the carbon nano tube (CNT) on Ti substrate with varying surface roughness, the distribution trends of the catalytic metal and grown CNT on Ti substrate are discussed from a micro-structural perspective.

A Facile Process for Surface Modification with Lithium Ion Conducting Material of Li2TiF6 for LiMn2O4 in Lithium Ion Batteries

  • Kim, Min-Kun;Kim, Jin;Yu, Seung-Ho;Mun, Junyoung;Sung, Yung-Eun
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.223-230
    • /
    • 2019
  • A facile method for surface coating with $Li_2TiF_6$ which has a high lithium-ion conductivity, on $LiMn_2O_4$ spinel cathode material for high performance lithium ion batteries. The surface coating is performed by using a co-precipitation method with $Li_2CO_3$ powder and $H_2TiF_6$ solution under room temperature and atmospheric pressure without special equipment. Total coating amount of $Li_2TiF_6$ is carefully controlled from 0 to 10 wt.% based on the active material of $LiMn_2O_4$. They are evaluated by a systematic combination of analyses comprising with XRD, SEM, TEM and ICP. It is found that the surface modification of $Li_2TiF_6$ is very beneficial to high cycle life and excellent rate capability by reducing surface failure and supporting lithium ions transportation on the surface. The best coating condition is found to have a high cycle life of $103mAh\;g^{-1}$ at the 100th cycle and a rate capability of $102.9mAh\;g^{-1}$ under 20 C. The detail electrochemical behaviors are investigated by AC impedance and galvanostatic charge and discharge test.