DOI QR코드

DOI QR Code

Study on Surface Modification of Ti Substrate to Improve the Dispersion of Catalytic Metals on Synthesis of Carbon Nanotubes

탄소나노튜브 합성 시 촉매 금속의 분산도 향상을 위한 Ti Substrate의 표면 개질 연구

  • Kwak, Seoung Yeol (Department of Materials Science and Engineering, Hanyang University) ;
  • Kim, Ho Gyu (Department of Materials Science and Engineering, Hanyang University) ;
  • Byun, Jong Min (Department of Materials Science and Engineering, Hanyang University) ;
  • Park, Ju Hyuk (Department of Materials Science and Engineering, Hanyang University) ;
  • Suk, Myung-Jin (Department of Materials and Metallurgical Engineering, Kangwon National University) ;
  • Oh, Sung-Tag (Department of Meterials Science and Engineering, Seoul National University of Science and Technology) ;
  • Kim, Young Do (Department of Materials Science and Engineering, Hanyang University)
  • Received : 2013.12.23
  • Accepted : 2014.02.03
  • Published : 2014.02.28

Abstract

This paper describes the surface modification effect of a Ti substrate for improved dispersibility of the catalytic metal. Etching of a pure titanium substrate was conducted in 50% $H_2SO_4$, $50^{\circ}C$ for 1 h-12 h to observe the surface roughness as a function of the etching time. At 1 h, the grain boundaries were obvious and the crystal grains were distinguishable. The grain surface showed micro-porosities owing to the formation of micro-pits less than $1{\mu}m$ in diameter. The depths of the grain boundary and micro-pits appear to increase with etching time. After synthesizing the catalytic metal and growing the carbon nano tube (CNT) on Ti substrate with varying surface roughness, the distribution trends of the catalytic metal and grown CNT on Ti substrate are discussed from a micro-structural perspective.

Keywords

References

  1. G. C. Kim: KONETIC, Global green growth policy, 1 (2010).
  2. X. Ren, C. Chen, M. Nagatsu and X. Wang: Chem. Eng. J., 170 (2011) 395. https://doi.org/10.1016/j.cej.2010.08.045
  3. J. G. Kim, H. C. Shin, J. H. Shim, W. S. Cho and J. H. Oh: Ceramist., 4 (2001) 47.
  4. R. W. Rice: Marcel Dek-Ker Inc, Porosity of Ceramics, New York, 1998.
  5. J. Kristy, R. P. Carlos, M. K. John, P. Volker, H. Min, D. Genevieve and G. Yury: Energy Environ. Sci., 4 (2011) 5060. https://doi.org/10.1039/c1ee02421c
  6. B. T. Ahn, H. T. Jeon, B. Y. Hur, K. B. Kim and J. W. Park: Solid state phenomena., 124 (2007) 1125.
  7. P. R. Bandaru: J. Nanosci. Nanotechnol., 7 (2007) 1.
  8. R. Zhang, A. Khalizov, L. Wang, M. Hu and Wen Xu: ASC., 112 (2012) 1957.
  9. G. Hong, Y. Chen, P. Li and J. Zhang: Carbon., 50 (2012) 2067. https://doi.org/10.1016/j.carbon.2012.01.035
  10. Y. Gao, S. P. Adusumilli, J. Turner, L. Lesperance, C. Westgate and B. Sammakia: J. Nanosci. Nanotechnol., 12 (2012) 7777. https://doi.org/10.1166/jnn.2012.6601
  11. C. J. Lee, J. H. Park and J. A. Yu: Chem Phys Lett., 360 (2002) 250. https://doi.org/10.1016/S0009-2614(02)00831-X
  12. K. S. Choi, Y. S. Cho, S. Y. Hong, J. B. Park, D. J. Kim and H. J. Kim: J. Korean Phys. Soc., 39 (2001) S7
  13. S. Ban, Y. Iwaya, H. Kono and H. Sato: Dental Materials, 22 (2006) 1115. https://doi.org/10.1016/j.dental.2005.09.007
  14. M. Kumar and Y. Ando: J. Nanosci. Nanotech., 10 (2010) 3779.

Cited by

  1. Synthesis of CNT on a Camphene Impregnated Titanium Porous Body by Thermal Chemical Vapor Deposition vol.22, pp.2, 2015, https://doi.org/10.4150/KPMI.2015.22.2.122