DOI QR코드

DOI QR Code

Effects of Preparation Conditions on Thermal and Electrical Properties of Oil-based Nanofluids for Transformer Application

변압기 냉각용 오일 기지 나노유체의 제조조건이 열 및 전기적 특성에 미치는 영향

  • Choi, Cheol (Advanced Materials Research Group, Strategic Technology Laboratory, KEPRI) ;
  • Yoo, Hyun-Sung (Advanced Materials Research Group, Strategic Technology Laboratory, KEPRI) ;
  • Oh, Jae-Myung (Advanced Materials Research Group, Strategic Technology Laboratory, KEPRI)
  • 최철 (한국전력 전력연구원 전략기술연구소 신소재그룹) ;
  • 유현성 (한국전력 전력연구원 전략기술연구소 신소재그룹) ;
  • 오제명 (한국전력 전력연구원 전략기술연구소 신소재그룹)
  • Published : 2007.09.27

Abstract

Oil-based nanofluids were prepared by dispersing nonconducting fibrous $Al_2O_3$ and spherical AlN nanoparticles in transformer oil. In this study, the effects of wet grinding and surface modification of particles on thermal and electrical properties of nanofluids were investigated. Grinding experiments were conducted with high-speed bead mill and ultrasonic homogenizer and nanoparticles were surface modified by oleic acid and polyoxyethylene alkyl acid ester(PAAE) in n-hexane or transformer oil, at the same time. It is obvious that the combination of nanoparticle, dispersant and dispersion solvent is very important for the dispersity of nanofluids. For nanofluids containing 1.0vol.% AlN particles in transformer oil, the enhancement of thermal conductivity was 11.6% compared with pure transformer oil. However, the electric-insulating property of AlN nanofluids was very low due to used dispersant itself. Therefore, the effect of the dispersant on thermal/electrical/physical properties of the transformer oil should be considered before selecting a proper dispersant.

Keywords

References

  1. S. U. S. Choi, ASME FED 231/MD 66, 99 (1995)
  2. J. A. Eastman, S. U. S. Choi, S. Li, W. Yu and L. J. Thompson, Appl. Phys. Lett., 78, 718 (2001) https://doi.org/10.1063/1.1341218
  3. S. Lee, S.U.S. Choi, S. Li and J.A. Eastman, J. Heat Trans., 121, 280 (1999) https://doi.org/10.1115/1.2825978
  4. X. Wang, X. Xu and S. U. S. Choi, J. Thermophys. Heat Trans., 13(4), 474 (1999) https://doi.org/10.2514/2.6486
  5. S. M. S. Murshed, K. C. Leong, C. Yang, Int. J. Therm. Sci., 44(4), 367 (2005) https://doi.org/10.1016/j.ijthermalsci.2004.12.005
  6. Y. Xuan and Q. Li, Int. J. Heat Fluid Flow 21, 58 (2000) https://doi.org/10.1016/S0142-727X(99)00067-3
  7. S. K. Das, N. Putra, P. Thiesen and W. Roetzel, ASME J. Heat Transfer, 125, 567 (2003) https://doi.org/10.1115/1.1571080
  8. H. Xie, J. Wang, T. Xi, Y. Liu, F. Ai and Q. Wu, J. Appl. Phys., 91, 4568 (2002) https://doi.org/10.1063/1.1454184
  9. H. Xie, J. Wang, T. Xi and Y. Liu, Int. J. Thermophysics., 23(2), 571 (2002) https://doi.org/10.1023/A:1015121805842
  10. H. E. Patel, W. Roetzel and S. K. Das, Heat Mass Transfer, 39, 775 (2003) https://doi.org/10.1007/s00231-002-0382-z
  11. H. E. Patel, S. K. Das, T. Sundararagan, A. S. Nair, B. Geoge and T. Pradeep, Appl. Phys. Lett., 83, 2931 (2003) https://doi.org/10.1063/1.1602578
  12. S. U. S. Choi, Z. G. Zhang, W. Yu, F. E. Lockwood and E. A. Grulke, Appl. Phys. Lett., 79, 2252 (2001) https://doi.org/10.1063/1.1408272
  13. Z. Li and Y. Zhu, Appl. Surf Sci., 211, 315 (2003) https://doi.org/10.1016/S0169-4332(03)00259-9
  14. J. Kestin and W. A. Wakeham, Physica A92, 102 (1978) https://doi.org/10.1016/0378-4371(78)90023-7
  15. P. Keblinski, S. R. Phillpot, S. U. S. Choi and J. A. Eastman, Int. J. Heat Mass Transfer, 45, 855 (2002) https://doi.org/10.1016/S0017-9310(01)00175-2
  16. W. Yu and S. U. S. Choi, J. Nanoparticle Research, 5(1-2), 167 (2003) https://doi.org/10.1023/A:1024438603801
  17. J. Koo and C. Kleinstreuer, Int. Communication Heat Mass Transfer, 32(9), 1111 (2005) https://doi.org/10.1016/j.icheatmasstransfer.2005.05.014
  18. W. Evans, J. Fish and P. Keblinski, Appl. Phys. Lett., 88(9), 9316 (2006) https://doi.org/10.1063/1.2179118