Browse > Article
http://dx.doi.org/10.3740/MRSK.2007.17.9.493

Effects of Preparation Conditions on Thermal and Electrical Properties of Oil-based Nanofluids for Transformer Application  

Choi, Cheol (Advanced Materials Research Group, Strategic Technology Laboratory, KEPRI)
Yoo, Hyun-Sung (Advanced Materials Research Group, Strategic Technology Laboratory, KEPRI)
Oh, Jae-Myung (Advanced Materials Research Group, Strategic Technology Laboratory, KEPRI)
Publication Information
Korean Journal of Materials Research / v.17, no.9, 2007 , pp. 493-499 More about this Journal
Abstract
Oil-based nanofluids were prepared by dispersing nonconducting fibrous $Al_2O_3$ and spherical AlN nanoparticles in transformer oil. In this study, the effects of wet grinding and surface modification of particles on thermal and electrical properties of nanofluids were investigated. Grinding experiments were conducted with high-speed bead mill and ultrasonic homogenizer and nanoparticles were surface modified by oleic acid and polyoxyethylene alkyl acid ester(PAAE) in n-hexane or transformer oil, at the same time. It is obvious that the combination of nanoparticle, dispersant and dispersion solvent is very important for the dispersity of nanofluids. For nanofluids containing 1.0vol.% AlN particles in transformer oil, the enhancement of thermal conductivity was 11.6% compared with pure transformer oil. However, the electric-insulating property of AlN nanofluids was very low due to used dispersant itself. Therefore, the effect of the dispersant on thermal/electrical/physical properties of the transformer oil should be considered before selecting a proper dispersant.
Keywords
Nanofluid; Transformer oil; Thermal conductivity; Surface modification;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Y. Xuan and Q. Li, Int. J. Heat Fluid Flow 21, 58 (2000)   DOI   ScienceOn
2 H. Xie, J. Wang, T. Xi, Y. Liu, F. Ai and Q. Wu, J. Appl. Phys., 91, 4568 (2002)   DOI   ScienceOn
3 H. E. Patel, W. Roetzel and S. K. Das, Heat Mass Transfer, 39, 775 (2003)   DOI   ScienceOn
4 H. E. Patel, S. K. Das, T. Sundararagan, A. S. Nair, B. Geoge and T. Pradeep, Appl. Phys. Lett., 83, 2931 (2003)   DOI   ScienceOn
5 J. Kestin and W. A. Wakeham, Physica A92, 102 (1978)   DOI   ScienceOn
6 W. Yu and S. U. S. Choi, J. Nanoparticle Research, 5(1-2), 167 (2003)   DOI   ScienceOn
7 S. U. S. Choi, ASME FED 231/MD 66, 99 (1995)
8 Z. Li and Y. Zhu, Appl. Surf Sci., 211, 315 (2003)   DOI   ScienceOn
9 H. Xie, J. Wang, T. Xi and Y. Liu, Int. J. Thermophysics., 23(2), 571 (2002)   DOI
10 S. U. S. Choi, Z. G. Zhang, W. Yu, F. E. Lockwood and E. A. Grulke, Appl. Phys. Lett., 79, 2252 (2001)   DOI   ScienceOn
11 P. Keblinski, S. R. Phillpot, S. U. S. Choi and J. A. Eastman, Int. J. Heat Mass Transfer, 45, 855 (2002)   DOI   ScienceOn
12 S. M. S. Murshed, K. C. Leong, C. Yang, Int. J. Therm. Sci., 44(4), 367 (2005)   DOI   ScienceOn
13 J. A. Eastman, S. U. S. Choi, S. Li, W. Yu and L. J. Thompson, Appl. Phys. Lett., 78, 718 (2001)   DOI   ScienceOn
14 S. Lee, S.U.S. Choi, S. Li and J.A. Eastman, J. Heat Trans., 121, 280 (1999)   DOI
15 X. Wang, X. Xu and S. U. S. Choi, J. Thermophys. Heat Trans., 13(4), 474 (1999)   DOI
16 S. K. Das, N. Putra, P. Thiesen and W. Roetzel, ASME J. Heat Transfer, 125, 567 (2003)   DOI   ScienceOn
17 W. Evans, J. Fish and P. Keblinski, Appl. Phys. Lett., 88(9), 9316 (2006)   DOI   ScienceOn
18 J. Koo and C. Kleinstreuer, Int. Communication Heat Mass Transfer, 32(9), 1111 (2005)   DOI   ScienceOn