• Title/Summary/Keyword: surface temperature

Search Result 14,625, Processing Time 0.043 seconds

Estimation of Hardening Layer Depths in Laser Surface Hardening Processes Using Neural Networks (레이져 표면 경화 공정에서 신경회로망을 이용한 경화층 깊이 예측)

  • Woo, Hyun Gu;Cho, Hyung Suck;Han, You Hie
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.11
    • /
    • pp.52-62
    • /
    • 1995
  • In the laser surface hardening process the geometrical parameters, especially the depth, of the hardened layer are utilized to assess the integrity of the hardening layer quality. Monitoring of this geometrical parameter ofr on-line process control as well as for on-line quality evaluation, however, is an extremely difficult problem because the hardening layer is formed beneath a material surface. Moreover, the uncertainties in monitoring the depth can be raised by the inevitable use of a surface coating to enhance the processing efficiency and the insufficient knowledge on the effects of coating materials and its thicknesses. The paper describes the extimation results using neural network to estimate the hardening layer depth from measured surface temperanture and process variables (laser beam power and feeding velocity) under various situations. To evaluate the effec- tiveness of the measured temperature in estimating the harding layer depth, estimation was performed with or without temperature informations. Also to investigate the effects of coating thickness variations in the real industry situations, in which the coating thickness cannot be controlled uniform with good precision, estimation was done over only uniformly coated specimen or various thickness-coated specimens. A series of hardening experiments were performed to find the relationships between the hardening layer depth, temperature and process variables. The estimation results show the temperature informations greatly improve the estimation accuracy over various thickness-coated specimens.

  • PDF

Micro-scale Thermal Sensor Manufacturing and Verification for Measurement of Temperature on Wafer Surface

  • Kim, JunYoung;Jang, KyungMin;Joo, KangWo;Kim, KwangSun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.4
    • /
    • pp.39-44
    • /
    • 2013
  • In the semiconductor heat-treatment process, the temperature uniformity determines the film quality of a wafer. This film quality effects on the overall yield rate. The heat transfer of the wafer surface in the heat-treatment process equipment is occurred by convection and radiation complexly. Because of this, there is the nonlinearity between the wafer temperature and reactor. Therefore, the accurate prediction of temperature on the wafer surface is difficult without the direct measurement. The thermal camera and the T/C wafer are general ways to confirm the temperature uniformity on the heat-treatment process. As above ways have limit to measure the temperature in the precise domain under the micro-scale. In this study, we developed the thin film type temperature sensor using the MEMS technology to establish the system which can measure the temperature under the micro-scale. We combined the experiment and numerical analysis to verify and calibrate the system. Finally, we measured the temperature on the wafer surface on the semiconductor process using the developed system, and confirmed the temperature variation by comparison with the commercial T/C wafer.

The Comparison to Physical Properties of Large Size Indium Zinc Oxide Transparent Conductive Layer (대면적 상온 Indium Zinc Oxide 투명 도전막의 물성 특성 비교)

  • Joung, Dae-Young;Lee, Young-Joon;Park, Joon-Yong;Yi, Jun-Sin
    • Journal of Surface Science and Engineering
    • /
    • v.41 no.1
    • /
    • pp.6-11
    • /
    • 2008
  • An Indium Zinc Oxide(IZO) transparent conductive layer was deposited on a large size glass substrate by using magnetron dc sputtering method with varying a deposition temperature. As the deposition temperature decreased to a room temperature, the sheet resistance of IZO film increased. But this deposition temperature range is included in an applicable to a device. From a standpoint of the sheet resistance, the differences of the sheet resistance were not great and the uniformity of the layer was uniformed around 10%. Crystallization particles were shown on the surface of the layer as deposition temperature increased, but these particles were not shown on the surface of the layer as deposition temperature decreased to the room temperature. It didn't make a scrap of difference in a transmittance of varying deposition temperature. Therefore, it is concluded that IZO thin film manufactured by the room temperature deposition condition can be used as a large size transparent conductive layer of a liquid crystal display device.

A Study on the GIS for The Sea Environmental Management II (- Developing a Line Density Algorithm for The Quantification to the Sea Surface Temperature Distribution - ) (GIS을 활용한 해양환경관리에 관한 연구 II (해수면 수온분포의 정량화를 위한 선 밀도 알고리즘 개발))

  • Lee, Hyoung-Min;Park, Gi-Hark
    • Journal of environmental and Sanitary engineering
    • /
    • v.21 no.4 s.62
    • /
    • pp.61-76
    • /
    • 2006
  • A Line Density algorithm was developed to quantify the sea surface temperature distribution using NOAA Sea Surface Temperature(SST) data and Geographic Information Systems(GIS), In addition, a GIS based automation model was designed to extract the Line Density Indices were determined by applying K-means Cluster. SST data in terms of March to May obtained on the coastal area of the Uljin from 2001 to 2004 in spring were used to make two data sets of average sea water temperature map in terms of year as well as month. From the result it was formed that water temperature gradient in April was the strongest among the other months, In particular very strog formation of oceanic front as well as temperature gradients were observed in front of the coastal area around Wonduk and Jukbyeon countries. Because those coastal area is a confront zone of two cold and a warm. It is expected that the development of a Line Density Algorithm would contribute to quantify of the SST for the research of Sea Surface Front(SSF) related to marine life management and the sea environmental conservation.

Infrared Signature Analysis of a Ship for Different Atmosphere Temperature and Wind Velocity (대기온도 및 풍속 변화에 따른 함정의 적외선 신호 특성 분석)

  • Choi, Jun-Hyuk;Lee, Ji-Sun;Kim, Jung-Ho;Lee, Sung-Ho;Kim, Tae-Kuk
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.5
    • /
    • pp.84-91
    • /
    • 2008
  • The spectral radiance received by a remote sensor at a given temperature and wavelength region is consisted of the self-emitted component directly from the object surface, the reflected component of the solar irradiation at the object surface, and the scattered component by the atmosphere without ever reaching the object surface. The IR image of a ship is mainly affected by location, meteorological condition(atmosphere temperature, wind direction and velocity, humidity etc.), atmospheric transmittance, solar position and ship surface temperature etc. Computer simulations for prediction of the IR signatures of ships are very useful to examine the effects of various meteorological conditions. In this paper, we have acquired the IR signature for different meteorological conditions by using two different computer programs. The numerical results show that the IR image contrast as compared to the background sea considering the atmosphere temperature and wind velocity.

Effects of the Incidence Angle and Temperature on the Performance of a Thin-Film CIGS Solar Cell for Solar Powered UAVs (태양광무인기를 위한 박막형 태양전지의 입사각 및 온도에 따른 성능분석)

  • Shin, Donghun;Kim, Tae Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.55.2-55.2
    • /
    • 2011
  • This research aims to study the effects of the incidence angle and surface temperature on the power generation performance of a thin-film CIGS solar cell for solar powered unmanned aerial vehicles (UAVs). The test rig consists of a unit CIGS solar cell is installed on a table whose angle is controlled manually. A K-type thermocouple is attached to the solar cell surface for temperature measurements. A solar module analyzer measures the voltage and current generated from the test solar cell. The solar module analyzer also calculates the maximum solar power and efficiency of the solar cell. All test data are acquired in a PC. Test results show that the solar cell efficiency decreases significantly with increasing incidence angle and increasing surface temperature in general. As the incidence angle increases from 0 degree to 90 degree, the solar cell efficiency decreases by 60%. The solar cell efficiency decreases by 10% with increasing solar cell surface temperature from $20^{\circ}C$ to $30^{\circ}C$, for exmaple. The direct cooling method of the solar cell using dry ice decreases dramatically the solar cell surface temperature, thus increasing the solar cell efficiency by 15%.

  • PDF

The comparison of thermal characteristics of new Han-ok floor heating for applying modern On-dol system (현대 온돌 시스템 적용을 위한 신한옥 바닥난방의 열적특성 비교)

  • Lee, Tai-Gang;Lee, Ju-Yeob;Song, Min-Jeong;Kim, Sun-Woo
    • KIEAE Journal
    • /
    • v.13 no.3
    • /
    • pp.61-69
    • /
    • 2013
  • The experiment on thermal characteristics of on-dol systems were carried out to apply to New Han-ok's heating system. Change of surface temperature varied with heating times, distribution of surface temperature, radiation property were surveid on four on-dol system in laboratory conditions. Followings are results. 1) "Hwang-to unit" was most favorable condition of the distribution of floor surface temperature. And the results from reaching time to thermal comfort temperature of on-dol system showed that "Hwang-to unit" was the most favorable to continuance of floor temperature. 2) There were a little difference in surface floor radiations of $30^{\circ}C$ for three wet on dol-systems. 3) It was suggested that "Hwang-to unit" is the most appropriate to floor heating system of new han-ok considering eco-friendship and continuance of floor temperature in intermittent heating condition.

Change of Surface Temperature and Far-infrared Emissivity in Ceramics Manufactured from a Board Mixed with Sawdust and Mandarin Peel (톱밥·귤박 혼합보드로 제조한 세라믹의 표면온도 변화 및 원적외선방사 특성)

  • Hwang, Jung-Woo;Oh, Seung-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.1
    • /
    • pp.66-79
    • /
    • 2019
  • The aim of the study is to use the by-products sawdust, formed during sawing and mandarin peel which are agricultural by products. The boards were manufactured by mixing the sawdust and mandarin peel at different mixing ratio and density. In terms of changes in surface temperature of ceramics, we could found that the velocity was fast in the early time of heat transfer until 10 minutes and after that the velocity increased but not very fast. At the elapsed time of 30 minutes, the surface temperature of ceramics increased with the carbonization temperature and rate of mandarin peel addition did not influence the surface temperature. Far - infrared emissivity had no constant tendency in rate of mandarin peel addition, it decreased with increase of carbonization temperature.

Design of an Asymmetric-custom-surface Imaging Optical System for Two-dimensional Temperature-field Measurement

  • Guanghai Liu;Ming Gao;Jixiang Zhao;Yang Chen
    • Current Optics and Photonics
    • /
    • v.8 no.5
    • /
    • pp.484-492
    • /
    • 2024
  • In response to the difficulty of synchronously obtaining multiwavelength images for fast two-dimensional (2D) temperature measurement, a multispectral framing imaging optical system is designed, based on the segmented-aperture imaging method and asymmetric surface shape. The system adopts a common-aperture four-channel array structure to synchronously collect multiwavelength temperature-field images. To solve the problem of asymmetric aberration caused by being off-axis, a model of the relationship between incident and outgoing rays is established to calculate the asymmetric custom surface. The designed focal length of the optical system is 80 mm, the F-number is 1:3.8, and the operating wavelength range is 0.48-0.65 ㎛. The system is divided into four channels, corresponding to wavelengths of 0.48, 0.55, 0.58, and 0.65 ㎛ respectively. The modulation transfer function value of a single channel lens is higher than 0.6 in the full field of view at 35 lp/mm. The experimental results show that the asymmetric-custom-surface imaging system can capture clear multiwavelength images of a temperature field. The framing imaging system can capture clear images of multiwavelength temperature fields, with high consistency in images of different wavelengths. The designed optical system can provide reliable multiwavelength image data for 2D temperature-field measurement.

Evaporation Cooling of Single Droplet on a Heated Solid Surface (가열된 고체표면에 부착된 단일 액적의 증발냉각)

  • Yu, Gap-Jong;Bang, Chang-Hun;Kim, Jeong-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.6
    • /
    • pp.845-852
    • /
    • 2001
  • The characteristics of evaporation cooling of single droplet on a heated surface were studied experimentally. The two kinds of heater modules were tested to measure cooling characteristics of metal surface (high conductivity) and Teflon surface (low-energy surface, low conductivity). The results showed that time averaged heat flux during droplet evaporation increased exponentially with initial surface temperatures of brass, copper and steel. The heat flux and evaporation time did not varied with metal conductivities. However, the temperature drop after the deposition of droplet was larger on Teflon than on the metals. Thus, the correlation of interface temperature between liquid droplet and metal surface was proposed as a function of the initial surface temperature of heating materials, which could be applied to both metal and non-metal ones.