• 제목/요약/키워드: surface problem

검색결과 3,052건 처리시간 0.036초

A 3-Dimentional Radiation Diffraction Problem Analysis by B-Spline Higher-Order Panel Method

  • Kim Gun-Do;Lee Chang-Sup
    • Journal of Ship and Ocean Technology
    • /
    • 제10권1호
    • /
    • pp.10-26
    • /
    • 2006
  • The radiation problem for oscillating bodies on the free surface has been formulated by the over-determined Green integral equation, where the boundary condition on the free surface is satisfied by adopting the Kelvin-type Green function and the irregular frequencies are removed by placing additional control points on the free surface surrounded by the body. The B-Spline based higher order panel method is then applied to solve the problem numerically. Because both the body geometry and the potential on the body surface are represented by the B-Splines, that is in polynomials of space parameters, the unknown potential can be determined accurately to the order desired above the constant value. In addition, the potential expressed in B-Spline can be differentiated analytically to get the velocity on the surface without introducing any numerical error. Sample computations are performed for a semispherical body and a rectangular box floating on the free surface for six-degrees of freedom motions. The added mass and damping coefficients are compared with those by the already-validated constant panel method of the same formulation showing strikingly good agreements.

다단계 반응표면법을 이용한 치과용 임플란트의 3차원 형상최적설계 (Three Dimensional Optimum Design of Endosseous Implant in Dentistry by Multilevel Response Surface Optimization)

  • 한중석;김종수;최주호
    • 대한기계학회논문집A
    • /
    • 제28권7호
    • /
    • pp.940-947
    • /
    • 2004
  • In this paper, an optimum design problem for endosseous implant in dentistry is studied to find best implant design. An optimum design problem is formulated to reduce stresses arising at the cortical as well as cancellous bones, in which sufficient design parameters are chosen for design definition that encompasses major implants in popular use. Optimization at once (OAO) with the large number of design variables, however, causes too costly solution or even failure to converge. A concept of multilevel optimization (MLO) is employed to this end, which is to group the design variables of similar nature, solve the sub-problem of smaller size for each group in sequence, and this is iterated until convergence. Each sub-problem is solved based on the response surface method (RSM) due to its efficiency for small sized problem.

Shape determination of 3-D reinforcement corrosion in concrete based on observed temperature on concrete surface

  • Kurahashi, Takahiko;Oshita, Hideki
    • Computers and Concrete
    • /
    • 제7권1호
    • /
    • pp.63-81
    • /
    • 2010
  • We present the shape determination method of 3-D reinforcement corrosion based on observed temperature on concrete surface. The non-destructive testing for reinforcement corrosion in concrete using a heat image on concrete surface have been proposed by Oshita. The position of the reinforcement of corrosion or the cavity can be found using that method. However, the size of those defects can not be precisely measured based on the heat image. We therefore proposed the numerical determination system of the shape for the reinforcement corrosion using the observed temperature on the concrete surface. The adjoint variable method is introduced to formulate the shape determination problem, and the finite element method is employed to simulate the heat transfer problem. Some numerical experiments and the examination for the number of the observation points are shown in this paper.

디스플레이 유리의 눈부심 방지 표면처리를 위한 샌드 블래스팅 공정의 모형화 (Modeling of Sand Blasting Process for Anti-Glare Surface Treatment of Display Glass)

  • 민철홍;김태선
    • 한국표면공학회지
    • /
    • 제51권5호
    • /
    • pp.303-308
    • /
    • 2018
  • Currently hydrofluoric acid (HF) based glass etch method is widely used for anti-glare (AG) surface treatment since it can effectively alleviate the specular reflection problem with relatively low processing cost. However, due to the environmental regulation and safety problem, it is essential to develop alternative technology to replace this method. For this, in this paper, we propose sand blasting based AG surface treatment method for display glass. To characterize the sand blasting process, surface roughness, haze, surface durability, and flatness are considered as process outputs and central composite design (CCD) method and response surface model (RSM) method are applied to model each process output. Models for surface roughness and haze showed 96.44% and 97.24% of R-squared values, respectively and they can be applied to optimize AG surface treatment process for various haze level requirements of display industries.

곡면간의 교차곡선 계산을 위한 개선된 Tracing 알고리즘 (An Improved Tracing algorithm for surface/surface intersection)

  • 조두연;이규열;임중현
    • 한국CDE학회논문집
    • /
    • 제4권3호
    • /
    • pp.269-283
    • /
    • 1999
  • Surface/surface intersection is a common and important problem in geometric modeling and CAD/CAM. Several methods have been used to approach this problem. All possible intersection curves can be obtained by using the subdivision algorithm, while it requires a great deal of memory and is somewhat inefficient. The tracing algorithm is much faster than the subdivision algorithm, and can find points on the intersection curve sequentially. But, the tracing algorithm has some problems in the intersection curves on surface boundaries. In this paper, an Improved tracing algorithm that includes some ideas such as a new trace-terminating condition for the intersection curves on surface boundaries, detecting closed intersections and extension for composite surfaces is suggested. This algorithm consists of three step: generating state points for curve tracing, tracing intersection curves and sorting pieces of the intersection curves. The results of this algorithm and comparisons to the 'DESIGNBASE' and 'ACIS' system are presented.

  • PDF

중학생들이 수학 문장제 해결 과정에서 구성하는 유사성 분석 (An Analysis of Similarities that Students Construct in the Process of Problem Solving)

  • 박현정;이종희
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제16권2호
    • /
    • pp.115-138
    • /
    • 2006
  • 본 연구의 목적은 문제 해결 과정 중 문제 이해나 계획 단계에서 학생들이 구성하는 유사성 탐구이다. 사례연구를 통하여 학생들이 수학 문장제를 해결하는 과정에서 구성하는 유사성들과 그러한 유사성들이 어떻게 구성되는지를 고찰하였다. 연구 결과, 학생들은 처음에 문맥적인 정보를 근거로 표면적 유사성을 구성하였으며, 그것은 문제 해법을 구하는 과정에 영향을 미쳤다. 특히, 스스로 구성한 다이어그램을 사용하여 문제를 이해하고, 문제들 간의 유사점과 차이점을 생각한 학생은 이전에 경험했던 식을 주어진 문제에 적합하게 변형하였다. 그러나 표면적 유사성만을 바탕으로 총체적으로 문제를 이해하는 학생은 이전에 적용하였던 식을 주어진 문제 해결에 적용할 수 있도록 변형하지 못했다.

  • PDF

라플라스 변환을 이용한 1차원 열전도의 수치해석 (A Numerical Method for One-dimensional Inverse Heat Conduction Problem Using Laplace Transform)

  • 신운철;배신철
    • 한국안전학회지
    • /
    • 제22권4호
    • /
    • pp.13-19
    • /
    • 2007
  • An numerical method to estimate thermal diffusivity has been developed for one-dimensional unsteady heat conduction problem, when the temperatures are know at two positions in a semi-infinite body. Using the closed form solution which has already derived an explicit solution for the inverse problem for one-dimensional transient heat conduction using Laplace transform technique, we first estimate the surface temperature. The thermal diffusivity can be estimated by using the estimated surface temperature and measured temperatures, which include some uncertainties. The estimated surface heat flux and thermal diffusivity are found to be in good agreement with those of the experimented conditions. This method will be extended to the simultaneous measurement of thermal diffusivity and thermal conductivity.

SEMI-DISCRETE CENTRAL DIFFERENCE METHOD FOR DETERMINING SURFACE HEAT FLUX OF IHCP

  • Qian, Zhi;Fu, Chu-Li
    • 대한수학회지
    • /
    • 제44권6호
    • /
    • pp.1397-1415
    • /
    • 2007
  • We consider an inverse heat conduction problem(IHCP) in a quarter plane which appears in some applied subjects. We want to determine the heat flux on the surface of a body from a measured temperature history at a fixed location inside the body. This is a severely ill-posed problem in the sense that arbitrarily "small" differences in the input temperature data may lead to arbitrarily "large" differences in the surface flux. A semi-discrete central difference scheme in time is employed to deal with the ill posed problem. We obtain some error estimates which also give the information about how to choose the step length in time. Some numerical examples illustrate the effects of the proposed method.

On the Hydrodynamic Forces Acting on a Partially Submerged Bag

  • Lee, Gyeong-Joong
    • Selected Papers of The Society of Naval Architects of Korea
    • /
    • 제2권1호
    • /
    • pp.140-155
    • /
    • 1994
  • The hydrodynamic problem is treated here when a pressurized bag is submerged partially in the water and the end points of it oscillate. SES(Surface Effect Ship) has a bag filled with pressurized air at the stern in order to prevent the air leakage, and the pitch motion of SES is largely affected by the hydrodynamic force of the bag. The shape of a bag can be determined with the pressure difference between inside and outside. Once the hydrodynamic pressure is given, the shape of a bag can be obtained, however in order to calculate the hydrodynamic pressure we should know the shape change of the bag, and vice versa. Therefore the type of boundary condition on the surface of a bag is a moving boundary like a free surface boundary. The present paper describes the formulation of this problem and treats a linearized problem. The computations of the radiation problem for an oscillating bag are shown in comparison with the case that the bag is treated as a rigid body. The hydrodynamic forces are calculated for various values of the pressure inside the bag and the submerged depth.

  • PDF

초등학교 아동의 과학 창의적 문제 해결과 인지 전략과의 관계 (The Relationship between Creative Problem Solving in Science and Cognitive Strategies in Elementary School Students)

  • 이혜주
    • 한국초등과학교육학회지:초등과학교육
    • /
    • 제26권3호
    • /
    • pp.286-294
    • /
    • 2007
  • This study investigated the relationship between elementary school students' creative problem solving skills in terms of science and cognitive strategies. Creative problem solving in science was measured by 4 variables; appropriateness, scientific ability, concreteness, and originality. Cognitive strategies were measured by 6 variables; surface(rehearsal), deep(elaboration and organization), and metacognitive strategies(planning, monitoring, and regulating). The KEDI Creative Problems Solving Test in Science(Cho et al., 1997) and the Motivated Strategies for Learning Questionnaire(Pintrich & DeGroot, 1990) were administered to 72 subjects. Data were analyzed by means of Pearson's correlation and multiple regression analysis. Our findings indicated a positive correlation between creative problem solving in science and cognitive strategies. The surface cognitive strategy (rehearsal) positively predicted the total score, the scientific ability's score, the concrete score, and the original score of creative problem solving in science. The deep cognitive strategy(organization) positively predicted the appropriate score and the metacognitive strategy(planning) positively predicted the original score of scientific creative problem solving skills.

  • PDF