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SEMI-DISCRETE CENTRAL DIFFERENCE METHOD FOR
DETERMINING SURFACE HEAT FLUX OF ITHCP

Zu1 QIAN AND CHu-L1 Fu

ABSTRACT. We consider an inverse heat conduction problem(IHCP) in
a quarter plane which appears in some applied subjects. We want to
determine the heat flux on the surface of a body from a measured tem-
perature history at a fixed location inside the body. This is a severely
ill-posed problem in the sense that arbitrarily “small” differences in the
input temperature data may lead to arbitrarily “large” differences in the
surface flux. A semi-discrete central difference scheme in time is employed
to deal with the ill posed problem. We obtain some error estimates which
also give the information about how to choose the step length in time.
Some numerical examples illustrate the effects of the proposed method.

1. Introduction

In some industrial applications one wishes to determine the temperature
or heat flux on the surface of a body, where the surface itself is inaccessible
for measurements [1]. In this case it is necessary to determine the surface
temperature or heat flux from a measured temperature history at a fixed loca-
tion inside the body. This problem is called inverse heat conduction problem
(IHCP). The following equation in a quarter plane is a model of this situation
in a one-dimensional setting:

Upy = Uy, z>0, t>0,
(1.1) u(z,0) =0, x>0,
u(l,t) =g(t), t>0, u(®,t)]eme bounded.

We want to determine the heat flux u.(z,t) for 0 < z < 1. Carasso [2] con-
sidered the problem and obtained a good result using a special Tikhonov regu-
larization method. However, he left behind the “zero point” problem (i.e., the
case £ = 0). In [5], we also considered the problem using a wavelet regular-
ization method and obtained a better result. Especially, we solved the “zero
point” problem. It is a pity that we did not consider the numerical aspects in
that paper.
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In the present paper we develop and perfect Eldén’s work [3] in which
he studied the temperature distribution of problem (1.1) using the difference
schemes in time. OQur main aim here is to investigate the heat flux distribution
of problem (1.1) using a central difference scheme in time. We do some con-
vergence estimates in section 3, study the stability of space march difference
in section 4 and give some interesting numerical examples to test the effects of
the method in section 5.

2. Ill-posedness of problem (1.1) and central difference schemes

It is well known that the problem (1.1) is well-posed for > 1, so we can eas-
ily obtain the solution u(z,t) and its gradient u, (z,t) for > 1 using classical
numerical methods (e.g., see [6]). Therefore the heat flux data us(1,t) is also
easily obtained. As this reason we can formulate (1.1) as a Cauchy problem
with appropriate Cauchy data [u, u,] given on thelinez = 1. Butfor0 <z < 1
the problem is severely ill-posed in the sense that the solution, if it exists, does
not depend continuously on the data. Even arbitrarily “small” differences in
the input temperature data may lead to arbitrarily “large” differences in the
solution. In this section, we simply analyze the ill-posedness of the problem
(1.1) and propose an appropriate method, for the ill-posed problem.

But before doing that, we need to define all functions appearing in the paper
to be zero for ¢ < 0, since we will consider our problem in L?(R) with respect
to the variable t. Note that, in the problem (1.1), the input temperature data
g(t) can only be measured, there must be measurement error. Thus we would
actually have as data some function gs(¢) € L2(R), for which

2.1 lgs — glt = llgs() — w(L, ) <6,
where || - || denotes L2-norm and the constant § > 0 represents a bound on the
measurement error: Let

56 = —— [ g
g@y—vﬁ;[wg@) dat

be the Fourier transform of the exact data function.
Now the problem (1.1) can be formulated, in frequency space, as below:

Uze(z,§) = 18U(z,€), =>0,§€R

(2.2) i(L,€) = §(0), e
(2, &)]e—oo; bounded.

The solution to this problem is given by

23) iz, ) = 'O (g),

and naturally

(2.4) o (z,€) = —0(£)e1—20EG(g),

where 8(€) is the principal value of /i€:
(2.5) 0(§) = (1 +0i)VI€]/2, o=sign(f), {eR
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Since the real part of 8 is nonnegative, #(z, £) and 4,(z,£) are in L*(R) with
respect to the variable &, we see from (2.3) and (2.4) that the exact data
function g(§) must decay rapidly as £ — oo, small errors in high-frequency
components can blow up and completely destroy the solution for 0 < z < 1.
As the measured data g5(t), its Fourier transform §5(¢) is merely in L*(R).

To obtain continuous dependence on the data, we assume, as for any ill-posed
problem, there exists an a prior: bound,

(2.6) IFOI = a0, )] < E.

This is essentially necessary in order to obtain any meaningful error estimates
for approximating the exact solution. Additionally, in order to get a procedure
that can be implemented numerically, it is necessary to somehow modify the
problem. Often, the dependence on § and E is included by choosing the value
of some parameter in the numerical procedure.

In the present paper, as a regularized approximation of problem (1.1} we
consider the following problem

Ugo (2,1) = g (v(z,t + k) —v(z,t — k), z>0,t>0,
v(z,0) =0, >0,

(2.7) v(1,1) = gs(t), t>0,
v(z, )|z~ bounded,

where we have replaced the time derivative by a central difference with the
step length k. The advantage of not discretizing in the space variable is that
we can use Fourier transform techniques. Before further discussing, we must
claim that the problem (2.7) was proposed by Eldén [3] for the first time. He
studied the temperature distribution for 0 < z < 1 and obtained some valuable
convergence estimates. A remedied work for the “zero point”(i.e., z = 0) can
be found in [7). In the present paper, we borrow his idea to consider the heat
flux distribution which is also of practical interest, for 0 < z < 1. Furthermore,
we discuss the stability of space marching difference and give some interesting
numerical examples to test the effects of the proposed method. In this sense, we
develop Eldén’s work [3]. For further development on the semi-discrete central
method, refer to [8], [9].
By taking the Fourier transform for variable t in (2.7) we have

Vez(z, &) = iSinkk (x,8),
(2.8) u(L,€) = 45(8),
v(x, €)|s—oe bounded.

The formal solution of (2.8) can be easily obtained
(2.9) O(z, ) = e EDgs(g),
and naturally

(2.10) By (2, €) = —p(k, £)e ~P+05,(¢),
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where p(k, £) is the principal value of /752 kg

(2.11) p(k,€) = (1 +vi)y/|sinké|/2k, v =sign(sinkf), £ecR

Note that if k£ is small, then for small £, p in (2.11) is close to # in (2.5).
Further, p(k,§) is a period bounded function with respect to &, therefore,
e1-2)(k,8) and p(k, £)el* =758 is hounded even if 0 < z < 1.

3. Error estimate

In this section we will discuss the difference of the heat flux solution between
problems (2.7) and (1.1) for 0 < 2 < 1. Theorem 3.1 gives the error estimate
for the case 0 < £ < 1 and Theorem 3.4 for the case x = 0.

Theorem 3.1. Let u.(z,t), whose Fourier transform is given by (2.4), be the
ezact heat flux. Let vy (x,t), whose Fourier transform is given by (2.10), be the
regularization approzimation of uy(x,t). The reqularized parameter or the step
length k € (0,1) is chosen

1
2(In(E/8))2"

Let the measured temperature history ot x = 1, gs(t), satisfy (2.1), and let the
a priori assumption (2.6) holds. Then
(1) If £ > e™®, for fized z € (0,1) we have

(3.2) lue(e, ) —ve(z, )l < CE' 76"

where C = 5v/2 + max {%5, 10\/5}.

@) If § <e™®,
(2-1) for gz <z <1, we have

(3.1) k=

(3.3) luz(z, ) — ve(z, )||<\/_ln Ep- 5 + e,

where 1 = max{—‘£E1 6%,2v2In EE1-242, —(1+2ln )(m)sjm]ﬁ},
(2-2) for 0 <z < (E/s),weh(we

(3.4) ua(z, ) — ve(a, )]|<\/—ln Ep- T6 + e,

where g9 = rnax{Q‘/_ 24/21n % v2 (1 +2InZ )ln }El_xd””.

Firstly, we want to claim that, in the following proof (including the proof of
Corollary 3.2), we have borrowed some results of Eldén [3], but for completeness
of the presentation we still give a detailed proof here. Since “the heat flux is
more difficult to calculate accurately than the surface temperature”, the proof
of theoretic error estimate on the heat flux is more complex than that of Eldén

3].
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Proof. By the Parseval formula, (2.4) and (2.10), we have

(3.5)
llue(z, ) = v (=, )| iz (2, ) — Ve (2, )|

18(€)e”©C==1g(¢) — p(k, £)er*D =gy (€)]].

I

For abbreviation, we denote

0:=0(8), p:= p(k,£), g := g(§), etc.
Note that (2.3), we have

(3.6) (&) =1(0,6) = e"®5(e).
So (3.5) becomes, due to (3.6), (2.1) and (2.6),
lua(z,-) —ve(z, )| = (10”0 D)G — per1=2)G + pert==)g — per1==)gs|
< [ (g7t~ per=o=) 7+ e - 30
3.7) < sup A(§)E + sup B(¢)9,
£€ER £€ER
where

A6 = ‘03“9“‘ - pep(l—w)—9b, B(&) = lpep(l—a:)

We start by estimating the second term on the right hand side of (3.7). Note
that p is given in (2.11), and k is chosen in (3.1),

(38)  BOF = 05 < \[1eVEO)5 = Vam LB,

To estimate the first term on the right hand side of (3.7), we rewrite A(§) as

(3.9) A =|e7] |0 — pe=T7),
where

o, l+ai 14w |sink§|>1/2
(3.10) T:=0—-p= —\/5 \/lf_l 3 (—k )

and o = sign(§), v = sign(sin k¢).
For estimating A(€), we shall distinguish between two cases.

Case I: for large [¢], i.e., |¢| > & =+ =2(In %)2, note that the real part
of 7 is non-negative, we can estimate (3.9)

A€) < le7?| (18] + [ol)
(3.11) = &= (/] + /[sin keI k)
< 2y/fele VIR,
Let
(3.12) H(t) ==2te V2 .= /Jg]| > V& -

It is easy to know that for & € (0,1), H'(ts) = 0 when ¢, = g, and H(t)
increases for t < ty and decreases for ¢t > tg, so
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(1) tO > \/€_0a Hmax - 2tOe_wtO/\/_ ﬁe—Zto/\/- < i TV £0/2.

(ll) to < V&0, Hmax =2 Eoe™ Vv €o/2
Combining (i), (ii) and (3.11), we have
(3.13)

AE < 2ma,x{\/7§’ \/é'_o} e TVé/2p < Zﬁmax{%,lng}El—sz.

Case II: for [{] < &, i.e., [k€] < 1. We could observe that for |£| in this
interval, o = sign(¢§) = sign(sinkf) = v, which means that we can rewrite
(3.10) as

: 1/2
(3.14) 7 =1(1+ 0%), 71:%( |£'_(|snllck£|) >

Note that, using the triangle inequality, we can estimate (3.9)

A®) = Ie—9m| § — feion(1=2) | ge—ioi(1-2) _ jo—iomi(1~2)
+ peioni(1=) _ jo-mi(l+ei)(1-2)
(315) < e "] (Blds + Il + IolAa),
where
Ay = '1 _emirn=a)| 4. '1 —e—m(1-2)|
Since 71 > 0, 0 < £ < 1, we have
(3.16) A =2|sin(en(1-2)/2)| <n(l-2)< 7.
Similarly, note that the inequality 1 — e™¥ < y(y > 0) holds, we have
(3.17) Ay <n(l-z) < 7.
Obviously,
(3.18) 7| = V2r.

Thus, combining the inequalities (3.15)-(3.18), we have
A < l _0m|(|‘9“r1 +V2r 4 |p|n)

< (V2+2v[g)e =Vl
sin 1/2
< A+ V2VE)e '5'/2< G (I—k—kﬂ> )

(3.19)

(k_% + ﬁk“l) e_”/lk—fl/m(\/w_ v/[sin ké]).

Introducing a new variable r = /|k€|, we shall find an upper bound of function
h(r) for 0 < r < 1, where

h(r) := e_”/‘/z—k(r — /sin(r?)).
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Using the inequalities

(3.20) sin(r2) > (r2 —r8/6)/2 >r(1 —r*/6) for 0<r<1,
we have .
h(r) < e=2r/VZE % =: h(r).

By an elementary calculation we find that if

V2k
(3.21) ro = V2

x
then

Bmax = le—wro/\/ﬁ,rg’

which leads to the estimate

A(E < (k—%+\/§k—1) max

h
(3.22)
< F(+2mb) (L) mdmr

If (3.21) is not satisfied then the maximum of h(r) is attained at r = 1, and we
have

A(QE < % (k—% + \/ik—l) e eV E

V2 E\. E_,
. = — = —E'"7%".

(3.23) 6 (1+2ln5)ln5

We now analyse the relation between the range of r¢o and the “signal-to-noise
ratio” £:

1) % 2
z € (0,1]. Hence, for €| < &, the inequality (3.23) is valid

A(§)E < g (1 +2In ?) In ?El—w(sw < 10V2E'~"6".

|

e~5, then ln% < 5,19 = 5\;2—’“ = wln(5E/5) > 1 > 1 for any

€T

In this case, the inequality (3.13) for |£| > & becomes
AOE < 2v2max{i ImZ}E'-=6"
< 2\/§max{%,5} El—=§°,
and the inequality (5.5) becomes
(3.24) £)6 <V2In El 25 < 5\/_E1 25,
Therefore, there holds
l[ua (2, ) = va(z,)|| < CE'~"6%,

where C = 5v/2 + maux{M 10\/5}. This just is the estimate (3.2).

2) & <e®, o= B2k =

z lniE/&)
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(2-1) If Hg—/éi < z < 1, then rg < 1. So the inequality (3.22) holds for
|€] < &. Combining this with (3.13), we have

AQ)E
< max{B2E 055, 2v 2 £ =707, 8 (142 ) (£)° )
= 1é&1,

and furthermore, note that (5.5), there holds
E
llus(z, ) — ve(z,)|| < V2In EEI‘“”J“’ +é1.

"This just is the estimate (3.3).
(2-2) f0 < z < T,Tg/—é), Then ry > 1 and the inequality (3.23) holds for

[€] < &- Combining it with (3.13), we have

A(§)E < max {Zﬁﬂﬁln %, \/?i (1 +2In ?) In —?} E'=°§% =: gy,

Note that (5.5), we get
E
llue(z, ) — va(z, )l < V2In EEl—ag‘s:c + 2.

This just is the estimate (3.4).
The proof of Theorem 3.1 is now complete. O

Theorem 3.1 indicates how to choose the step length k. It also shows that
when the “signal-to-noise ratio” E/§ is relatively low, the error between the
exact “heat flux” solution and its approximation by the time difference is not
significantly large. But, when we let § tend to zero, the rate of convergence of
the time-discrete scheme is only logarithmic.

Corollary 3.2. Let z be fized in (0,1). Then, asymptotically, as § — 0,

E
(3.25) llu(z, ) = v(=, )| ~ (&)
Proof. 1f § is small enough, then 5/In(E/8) < z < 1, and the largest term in
(3.3) dominates. O

Remark 3.3. The error estimates in Theorem 3.1 do not give any useful infor-
mation on the continuous dependence of the solution at z = 0. Moreover, as
z — 07T, the accuracy of the regularized solution becomes progressively lower. -
Carasso [2] and Eldén [3] met the same trouble. Actually, this is common in
the theory of ill-posed problems, if we do not have additional conditions on
the smoothness of the solution. To retain the continuous dependence of the
solution at x = 0, we introduce a stronger a priori assumption

(3.26) IfOllp == llu(0, )i, < E, p>0,
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where || - ||, denotes the norm in Sobolev space HP(R) defined by

= ([ o 52>p\f(s>|2dg)”2 |

Theorem 3.4. Let the conditions (2.1) and (3.26) hold. u,, v, are given by
(2.4) and (2.10) respectively. The step length k € (0,1) is chosen

(3.27) k= 1

2 (1n (£ (1n %)‘2”))2

Then, if p > %, we have

1-2p
fus(0,) = 0200, )1 < V2B ()

+ V2E (m (m ?) _QP) (m ?) e

where € = max {219%(1’_%), 1—+6‘ék2} E.

Proof. As the proof of Theorem 3.1 and note that the first inequality of (3.7),
we know

[tz (0, ) = w20, )| < 118 = per=*) F1| + lloe? G — 3o
=118 = per =) (1 + €2) 772 (1 + )P/ f[| + llpe” (§ — Gs)ll-
Now the conditions (2.1) and (3.26) lead to

(3.28) et (0, ) — 02 (0, )| < sup A(€)E + sup B(€)8,
£€R £ER

where

(3.29) AE) = (8 - pe" ") (1 + )P, B(&) = |pe’].

We also start by estimating the second term on the right hand side of (3.28).
Due to (2.11) and (3.27), we have

B(&)s < \/%emé 2l (% (m %) _2,,> : ? (m ?) s

(3.30) =V2E (m %) o +V2E (m (m ?) _2,,) (ln %) o :

To estimate the first term on the right hand side of (3.28), we rewrite
(3.31) A©) = 16— peT|(1+ €77,
where 7 is given by (3.10).

For estimating A(¢) in (3.31), we will distinguish three cases.
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Case I: for large values of |¢[, i.e., for |¢| > & := k~%. Note that Re(r) >0
there holds

~ ‘ ~1_ 4 1
(3:32)  A©) < (01 +1p)IE]7" < 2A¢PP < 257" = 2k3P7D, p>

Case II: for 1 < |¢| < &, taking the similar procedure of (3.14)-(3.18), we
get

|0 _ pe—‘rl — |0 _ ae—ia‘rl + Qe—iarl . pe—ia‘rl +pe—z’0"r1 _ pe—'rl(l-i—ia)l
< ,9'7‘1 + \/§T1 + ]p|7‘1

(3.33) < (V2+2VE)m.

Therefore Z({) in (3.31), can be estimated as bellow (note that |k¢| < ks <
1, 7 is given in (3.14), and the inequality (3.20) holds):

A® < (V2+2/lE)n 1+

k? 5 3 2\ —p/2

= (lelf +v2IeP) (1+€3) 7.

If 1 < p< 2, note that [¢] < &, we have
~ 2 5 ~2_p _
A© < S (1gtr+ valer) < % (& +vag)

1+
6

else if % <p<3, notethat 1 < |¢] < &, we have
(3.36)

A9 <& (3 + vaerr) <& (14 v ) <

else if p > 3, note that |£] > 1, we have

(3.34)

IA

S

k( —3),

(3.35) = %(k%p +V2k8P%) <

337 A© <% (lgFr + vapger) < 112

Case III: [¢| < 1, following the procedure of (3.33) and (3.34), we can also
estimate (3.31) as

638 O <5 (1t varr) e e) < 2

Summarizing (3.32), (3.35)-(3.39), we complete the estimate of the first term
on the right hand side of (3.28)

K2

N =

(3.39) A(¢)F < max {%%(P—%), 1+6—‘@k2} E=Z%, p>

The theorem now follows by combining (3.39) and (3.30). 0O
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Remark 3.5. For p > % , since the step length & tends to zero as the data error
d — 0, we can easily find that & — 0(§ — 0) too. Hence,

. 1
(%I_I}%) “um(o’ ) - Um(ov )“ =0, for p> '2_

Remark 3.6. In the practical applications || f{|, is usually not known, therefore
we have no the exact a priori bound E. However, if we select

1

2(1n (3 (m3) 7))

ie,let p=1, E=1in (3.27), we can also obtain

o0, =200, <92 (1) "+ 2 (1 (1) BICHIRE

where £, = max {2k%, liG‘QkQ} E. This may be helpful in our realistic com-
putation.

(3.40) k=

Remark 3.7. We separately consider the case 0 < z < 1 (Theorem 3.1) and the
case £ = 0 (Theorem 3.3), in order to emphasize the following facts. For the
case 0 < z < 1, the a priori bound for ||u(-,0)|| is sufficient. However, for the
case = 0, the stronger a priori bound for ||u(-,0)||, (p > 1) must be imposed.
For the unification of both cases, one can see our previous paper [5].

4. Stability of space march difference for the regularized problem

The approximation v(z,t) and v,(z,t) in (2.9), (2.10), may be viewed as
the solutions to an initial value problem for a second order partial differential
equation, with appropriate initial data. This point of view is the basis for a
powerful computational procedure for obtaining v(z,t) and v, (z,t) from the
data at z = 1.

Let g5(t) be the measured temperature data at = 1 (extended by zero for
t < 0). Define

(4.1) a(t) = # / Z ¢455(6)de
(42) gat) = \/% / e plk, 7s(6)de,

where p is given by (2.11).
Let us make a change of variable to reflect integration in the direction of
decreasing z, and so that the origin corresponds to x = 1, i.e., put

(4.3) z=1-z
and let
(4.4) w(z,t) = v(z,t).
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Then w,(z,t) = —v,(z,t), and we will consider the following Cauchy problem

War(2,t) = L (w(z,t + k) —w(z,t—k)), 0<2<1, —o0<t< 00,
(4.5) w(0,t) =g1(t), —o0<t< 00,
w,(0,1) = g2(t), —o0 <t < o0.

Theorem 4.1. The initial problem (4.5) has a unique solution w(z,t). More-
over, if 0 < 2 < 1, then

(4.6) w(z,t) =v(l — 2,t),

(4.7 w;(2,t) = —v, (1 — 2,1),

where v(z,t), vz (x,t) are the approzimations defined in (2.9), (2.10).

Proof. Taking Fourier transform for t-variable in (4.5), for each frequency &,
we obtain an initial value problem for an ordinary differential equation, i.e.,

Ba(2,8) =i 2 g )

@(07 g) = §1 (6) = §5(€)7

The above problem has the unique solution

(4.8) w(z,§) = e”g5(¢),
and clearly
(4.9) W, (2,€) = pe” gs(£)-

An inverse Fourier transform in (4.8) and (4.9) now yields the unique solution
w(z,t) of (4.5) and its gradient w,(z,t). If we now compare w(z,t), w.(z,t)
with the approximations in (2.9), (2.10), we verify that (4.6), (4.7) are true. O

We will show that, for problem (4.5), there are explicit and unconditionally
convergent difference schemes for appropriately filtered initial data such as g; (¢)
and go(t) in (4.1), (4.2).

Rewrite the initial value problem (4.5) as an equivalent first order system

wy(z,t) = h(z,t), 0<z2<1, —o0<t<oo,
(4.10) k. =L (w(z,t+k) —w(z,t—k), 0<z<1l, —o00<t< o0,
w(0,t) = g1(t), h(0,) = go(t), —o0 <t < 00.

Let Az be a small increment in the z-variable and let (N + 1)Az = 1. We
consider a difference scheme where only the z-variable is discretized, while the
t-variable is left continuous. Let w™(t), A"(t) denote, respectively, w(nAz,?),
h(nAz,t), for0 < n < N+1. The following difference approximation is explicit,
consistent, and second order accurate in Az.

2

w™t(t) = w(nAz, t) + Azw,(nAz,t) + ATzwzz(nAz, t)
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(4.11) =w”(t)+Azh"()+ATZZ%( "t+k)—w(t—k), 0<n<N,

2
R™LH(t) = h(nAz, t) + Azh,(nAz,t) + ATzhu(nAz,t‘)

= h(nAz,t) + Azﬁl—];(w(nAz,t + k) —w(nAz,t - k))

Azzz ;k (w2 (nAz,t + k) — w.(nAz, t — k)
(4.12) = h(nAz,t) + Azﬁ(w(nAz, t+k)—wnAz,t—k))
+ ATz§z(h(nAz, t+k)— h(nAz,t —k))
— W) + Az;—k(w"(t + k) —w(t— k)
+ ATzi(h"(t +k)—-h"(t—k)), 0<n<N,
(4.13) wl(t) = g1(8), hO(t) = g2(2).

Now the following convergence result holds.

Theorem 4.2. Let w™(t), h™(t) be the solutions of the difference scheme
(4.11)-(4.13) and let w(z,t), h(z,t) be the solutions of (4.10). Then, asn — oo,
Az — 0 and nAz = z, we have, for each t,

(4.14) w™(®t) = w(z,t), ") = h(z1t).
Proof. Taking Fourier transform about the ¢-variable in (4.11)-(4.13), we have

wis) oo = (14 SE D) gnie) 4 asinge),

wm(g) + (1 + éﬁism(kg)) M (©),

(4.16) ALH(E) = Az S

@°(8) = Gs(€), R°(€) = pdis(£).

Since p is given by (2.11), i.e.,
[isin(k

@ = (1+ 25 )w (6) + AR

we get
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Note that ﬁo(f) = pgs(€) = pw°(£), therefore

w1 (€) = (1 + pAz+ @i) @°(§).

Similarly, we have
o~ 2 o~
Rl(e) = (1 +phz+ (Lii) (e).

Denote

a(€) = 1+ pAz + (”A;)z.

An simple induction argument using (4.15) and (4.16) shows that
@"(€) = ¢"(©)@°(©),
h() = g OR(©).

Now doing the inverse Fourier transform, we get

(4.17) umn=£§[2¢vﬁm@a,
(4.18) hn(t) = \/% / G (Ods()de

Now, ¢"(£) — e”* as n — oo. Furthermore,

lg"(©)] < (1 4 lelz ——(';'i)) < elvlz < elel = g/ VE,
n n

Hence, the Lebesgue dominated convergence theorem now shows that w™(t) —

w(z,t), wi(t) = w,(z,t) for each t. O

This theorem shows that the space marching scheme is stable for appropriate
initial data. A similar result can be found in Carasso’s famous paper [2].

5. Numerical tests

In this section we do some numerical tests intended to illustrate the effects
of the proposed method. The tests are performed using MATLABG.5.

The numerical examples are constructed in the following way: First we
select the exact solution f(¢) of problem (1.1) at £ = 0, and compute the
data u,(0,t) = d(t), u(1,t) = g(t) and u,(1,t) = p(t), by solving a well-posed
problem (e.g., see [6]). Since these computed solutions are very close to the
exact solutions, we will use them as the exact data in the following discussion.
Then we add a normally distributed perturbation to each data function giving
vectors ¢g° and p®. Finally we solve the system (2.7) by the method of lines [4],
i.e., we discretized the problem only with respect to the time variable ¢ and
left the spatial variable z continuous, and then we get a system of ordinary
differential equations. The space marching is performed using a Runge-Kutta
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method (ode45 in MATLAB) with automatic step size control, where the basic
method is of order 4 and the embedded method is of order 5. In all tests the
required accuracy in the R-K method is 1074.

We create (gf ) € R", which is a perturbation vector (normal distributed
random error is added) of the discrete vector (g;) = (g(¢;)) and t; = (i — 1)At,
At=-1-i=1,2,... n, such that

llg® — gl =

We similarly created the perturbation vector (k) € R”.
In the following, we first give an example which has the exact expression of
the solution u(z,t). This will be convenient when a reader tries to verify it.

Example 1. It is easy to verify that the function

z z+1)°
(5.1) u(z,t) = { tsL/%eXp{__( 4t)_}, t >0,
0, t<0,
is the exact solution of problem (1.1) with data
2 1
_ [ grep{-3}, t>0,
6:2) =1 7 12
So
1 1
— _ [ @rep{-5}, t>0,
(5.3) f(@) :==u(0,t) = { 0. <0,

and || fl| L2y = 1.9999976. We might as well take E = 2 in (2.6).

Test 1. We chose the perturbation § = 0.001, the a priori bound E = 2, the
regularization parameter k, i.e., the step length At of t-variable is At = k =
W = &, son = 59. From Figure 1 we could find that the computed
results are satisfactory when z is not small. However, the results are not very
good as z closes to 0. This is consistent with Theorem 3.1.

In the following, we are interested in the “zero point” (z = 0), i.e., we only
illustrate the computed results v, (0,t). The errors of the recovered v, at z = 0
are measured by the weighted [?-norm defined as

n 1/2
(54) B(u.) = (%Zlvw(O,ti) —um(o,t,-)F) .

=1

Test 2. Considering also Example 1, we take the perturbation § = 10~* to
compute the I? errors E(u,) by choosing different step length (see Table 1).

Let kg = —l—ﬁ = 0.0223. From Table 1, we can at least find two
2(ln(%(ln%) ))

useful information. Firstly, the step length of t-variable k has a regularization
effect. A better parameter choice is k = 0.7kg. Secondly, Table 1 can also show
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(8) Exact heat ux u,

FIGURE 1. Example 1: (a) the exact heat flux uy; (b) the
computed heat flux.v,; (c) the error Vg ~ Ug.

that the quality of the computed heat flux v, is not very sensitive to variations

of the step length. Thus, in practice, it is relatively easy to find an appropriate
value for k.

Test 3. In Figure 2, we give the comparison of the exact heat flux and com-
puted approximation at z = 0 for perturbations § = 10~3 and § = 10—4.
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TABLE 1. The [? errors of the computed heat flux E(u,), ko = 0.0223

k 0.3kp 0.4k 0.5kg 0.6kg 0.Tko 0.8ko 1kq 1.2ky  1.5kg 2ko
E(u.) 2.071 0729 0505 0.432 0.338 0.533 0.809 0.841 1.034 1.391

@ - 5 .
—— Approximation
~— Exact flux

) and computed v (0.

Exact Heat flux

()

Exact Heal flux u,(0.) and computed v,{0.)

o 0.1 02 03 04 05 08 07 08 09 1
Time t

FIGURE 2. Example 1: (a) the exact u.(0,t) and computed
v2(0,t), the perturbation 6 = 1073, the step length k = &5;
(b) the exact u,(0,t) and computed v (0,t), § = 107*, the

step length k = &.

Example 2. We consider a function that is not infinitely smooth:

0, 0<t<02,
4408, 02<t<0.5,
32-4t, 05<t<08,
0, 08<t<1.

(3.5) @)=

Test 4. Considering Example 2, in Figure 3, we also give the comparison of
the exact heat flux and computed approximation at z = 0 for perturbations
§=10"%and § = 1075,



1414 ZHI QIAN AND CHU-LI FU

" Approximaton
— Exactfiux

Exact Heat flux u_(0,) and computed v, (0.1)
.

(o}

Exact Heat fiux u,(0.t) and computed v, (0.1

Y \ . -
] 01 02 03 04 05 06 07 08 09 1
Time

FIGURE 3. Example 2: (a) the exact u,(0,t) and computed

v¢(0,1), the perturbation § = 1074, the step length k = Z;

(b) the exact u,(0,¢) and computed v.(0,t), § = 107°%, the
1

step length k = 135.

From these tests, we conclude that the semi-discrete central difference me-
thod in time works well for an appropriate step length & which plays the role of
regularization parameter. The idea will be taken into account when we consider
other ill-posed problems.

6. Conclusion

In this paper, we developed Eldén’s work [3}. We discussed the convergence
of the surface heat flux of IHCP with respect to the perturbation data and
obtained an explicit error estimate. With a stronger assumption on the reg-
ularity of the solution, the convergence estimate was obtained for the whole
domain (i.e., including z = 0). We also discussed the stability of space march-
ing difference and gave some interesting numerical examples to test the effects
of the proposed method. The limitation of the proposed method we found in
our numerical experiments was that the results are not satisfactory for prob-
lems with higher error levels. Fortunately, the problem could be solved when



SEMI-DISCRETE CENTRAL DIFFERENCE METHOD 1415

space-marching schemes were combined with initial filtering of the data, which
reduces the sensitivity to perturbations in the data (e.g., [2] and [6)).

Acknowledgements. We thank the anonymous referee for her/his careful
reading and helpful suggestions and comments. The project is supported by
the NNSF of China (No. 10671085), the NSF of Gansu Province of China
(No. 3ZS051-A25-015) and the Fundamental Research Fund for Physics and
Mathematic of Lanzhou University (No. Lzu05005).

References

[1] J. V. Beck, B. Blackwell, and S. R. Clair, Inverse Heat Conduction: Ili-posed problems,
John Wiley and Sons, Inc., 1985.

[2] A. Carasso, Determining surface temperatures from interior observations, SIAM J.
Appl. Math. 42 (1982), no. 3, 558-574.

{3] L. Eldén, Numerical solution of the sideways heat equation by difference approzimation
in time, Inverse Problems 11 (1995), no. 4, 913-923.

, Solving the sideways heat equation by a ‘method of lines’, J. Heat Trans. ASME
119 (1997), 406-412.

[5] C. L. Fu and C. Y. Qiu, Wavelet and error estimation of surface heat flur, J. Comput.
Appl. Math. 150 (2003), no. 1, 143-155.

[6] D. N. Hao, H.-J. Reinhardt, and A. Schneider, Numerical solution to a sideways para-
bolic equation, Internat. J. Numer. Methods Engrg. 50 (2001), no. 5, 1253-1267.

[7] Z. Qian, C. L. Fu, and X. T. Xiong, Semidiscrete central difference method in time for
determining surface temperatures, Int. J. Math. Math. Sci. (2005), no. 3, 393-400.

[8] X.T. Xiong, C. L. Fu, and H. F. Li, Central difference method of a non-standard inverse
heat conduction problem for determining surfaoce heat fluz from interior observations,
Appl. Math. Comput. 173 (2006), no. 2, 1265-1287.

, Central difference schemes in time and error estimate on a non-standard in-

verse heat conduction problem, Appl. Math. Comput. 157 (2004), no. 1, 77-91.

[4]

(9]

ZHI QIAN

SCHOOL OF MATHEMATICS AND STATISTICS
LANZHOU UNIVERSITY

LanzHOU 730000, P. R. CHINA

E-mail address: qianzh03@163.com

CHu-LI Fu

SOHOOL OF MATHEMATICS AND STATISTICS
LANZHOU UNIVERSITY

LanzHOU 730000, P. R. CHINA

E-mail address: fuchuli@lzu.edu.cn



