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Abstract

The hydrodynamic problem is treated here when a pressurized bag is submerged
partially in the water and the end points of it oscillate. SES(Surface Effect Ship) has
a bag filled with pressurized air at the stern in order to prevent the air leakage, and
the pitch motion of SES is largely affected by the hydrodynamic force of the bag. The
shape of a bag can be determined with the pressure difference between inside and outside.
Once the hydrodynamic pressure is given, the shape of a bag can be obtained, however
in order to calculate the hydrodynamic pressure we should know the shape change of
the bag, and vice versa. Therefore the type of boundary condition on the surface of a
bag is a moving boundary like a free surface boundary.

The present paper describes the formulation of this problem and treats a linearized
problem. The computations of the radiation problem for an oscillating bag are shown
in comparison with the case that the bag is treated as a rigid body. The hydrodynamic
forces are calculated for various values of the pressure inside the bag and the submerged
depth.

1. INTRODUCTION

The SES which is widely used as a high speed passenger ship has a pressurized bag at the
stern to prevent the air leakage. The stern bag not only prevent air leakage but also has a
large effect on the pitch motion of the craft. The pitch motion is affected by the side hulls,
bow skirt and the stern bag. But the effect of bow skirt is small because of the mechanism
of it, and that of side hulls is also small because of a small displacement in comparison with
that of the craft. The pitch damping due to the stern bag is not all the damping of the craft
of course, but the effect of the stern bag is considerably large. However, the hydrodynamic
problem of the pressurized bag seems not to have been treated.

The problem when a pressurized bag submerges partially into water and oscillates has a
different nature compared with that of a rigid body. In this paper, the problem is formulated.
On the surface of a bag, the kinematic boundary condition is not sufficient to set up the
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boundary value problem. The reason is that the shape of a bag can be obtained provided
that the hydrodynamic pressure is given. However in order to calculate the hydrodynamic
pressure the shape change of the bag should be known, and vice versa. Therefore both the
dynamic and kinematic boundary conditions should be satisfied on the unknown surface of
the bag. This is a typical free boundary problem. Furthermore the boundary condition is
more complex than that of a free surface, in which the condition has a point-wise form. If the
pressure changes on a certain portion of a bag, the whole shape of the bag changes. Thus the
pressure change in one point has an effect on the boundary condition in the whole surface,
and the boundary condition can not be represented as a point-wise form, and becomes more
complicated.

The formulation is made in the framework of a potential theory with additional assump-
tions that the mass of the bag is negligible and so does the tangential force variation on the
bag, and the bag has no elongation in the girthwise length. And the bag is assumed to be
fed with a constant pressure and the air flow in the bag is neglected. The solution of a static
problem was obtained by iteration method, and the dynamic problem was solved by using
Green'’s identity defined in the fluid domain.

2. STATIC PROBLEM

In this section, the static problem is treated when the bag is partially submerged in water.
The assumptions are made so that the mass of the bag is negligible and the elongation of the
bag is negligible also. Because most bags are made of flexible fibers, the above assumptions
are reasonable. In this section, the shape of a bag and its change due to pressure change will
be treated.

2.1 Shape of a Bag

The shape of a bag is obtained in this section when the pressure inside and outside of
the bag differ from each other, under the assumption that the tension is constant along the
perimeter of the bag unless the bag undergoes tangential forces. The pressure, tension and
curvature of a bag are related by the following Laplace’s formula.[1]

T
—_—p = — 1
B-P=5 (1)
where p, is the pressure inside the bag and p outside. Here, the pressure is understood as a
gage pressure hereafter. T is tensile force and R the radius of curvature of the bag, where
the sign convention is that R is positive when the origin of the radius is located toward the
inside of the bag. We introduce a parameter /, the arc length of the perimeter along the bag,

as shown in Fig.1 and defied as
dz\*  (dy\’
() + (&) - @

The bag is attached to a structure at the two points, A and B. The positions of A and B
are represented as (z4,y4) and (zp,yp). The angles 84,05 are defined as the one between the
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positive z-axis and direction tangential to the bag increasing I. [ increases from point A to
B. The total length of the perimeter is L. Consider the equation that represents the shape
of a bag. The radius of curvature is the reciprocal of the derivative of a tangential angle with
respect to arc length, so the tangential angle can be written as follows.

'y
(1) = /()Edu+9A

! —
/0 pr pdu+9,; (3)

The shape of a bag can be obtained from Eq.(2) and Eq.(3).

z(l) = /Olcos(O(u))du+xA
yO) = [ sin(0(w)du +ys @

Once the positions of two points A, B, the perimeter L, and the pressure difference p, — p
are given, we can obtain the shape of the bag from the above equations. Two unknowns T
and 64 (the angle can be one of 4 and 0p, here 84 was chosen) should be obtained from the
condition that the point (z(L),y(L)) must be (zp,y5).

In the case that the pressure difference p, — p is constant along the perimeter of the bag,
the shape of the bag is a circular arc and T,64 can be easily obtained, but otherwise it is
difficult to obtain a closed solution so that the numerical method must be used to do it. The
numerical solution is obtained by using the modified Newton method.[2]

fir = z(L)-z3=0
fo = y(L)-yp=0, (5)

Lo = -1 o ) ©

afe ek 17171
AT = |\l + EJZ 552 {fll’:
04 Gl ey
A
. L PPy — P Ak
fitifs = /0 exp [z A ~—1Tdu+20A] dv )

+(.’L‘A + iyA) — (CL‘B + in),

where the superscript & means the iteration step, and the pressure outside is a function of
(z(1),y(1)). The modified Newton method is a modification of a Newton method in which both
the Newton and the steepest descent method are used. When )\, = 0 the method becomes the
Newton method, and when A >> 1, the steepest descent method. Near the true solution the
Newton method is very effective, however in the region little away from the true solution the
convergence of the Newton method is poor, and sometimes for the initial guess too far from
the true solution the iteration may not converge. So the steepest descent method is required,
which converges slow but confirms a better convergence for a wide range of the initial guesses.
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The value ranged from 1% to 10% of the largest absolute value of (%%, ge%v %g}, gﬁ) was used
for A¢. The initial guess can be chosen as follows, from Eq.(3),

1 L
0 = T/ﬂ(p;,—p)du%—@,;

L
= T<pb—p>+9,4, (8)

where < p, — p > is the mean value along the perimeter. If the perimeter L is given we
can draw the circular arc whose end points are point A and B, in such shape 84,65 can be
chosen as an initial guess. And an initial guess for the tension is from the above equation.
(0 — 04 < 27 must be hold)

As the bag moves down, the buoyancy force becomes larger. If the buoyancy force is
greater than a certain value, the static stability problem can arise, and the shape of the bag
will be changed abruptly. Suppose the case that the heights of points A and B are equal.
The force equilibrium in the upward direction is

Pod — Boyy = T(—sinf4 +sinfp),

and in the z-direction,
T(cosfs —cosfg) = 0.

If there is no external force in the z-direction, the angles must satisfy 85 = —64 because of
the geometrical symmetry. Further if the buoyancy B,., becomes larger and reaches ps-d, the
angle will be 84 = —m from the force equilibrium in the upward direction. At this moment,
if the external force in the z-direction is given infinitesimally, 84,6p will be changed by an
amount of positive Af. Then the force in the z-direction will be

T(cos(64 + AB) — cosf — cos(fp + Af) + cosbp
= T(—sinf4 +sinfp)Ad,

in which the force equals to zero if 84, = —7. That is, there is no restoring force in z-direction.
And if 84 < —m7, the restoring becomes negative, and the static instability takes place.

If we want to analyze the problem of the case By, > ps - d, the wall is needed to block
the ‘fling around’ of the bag. This static instability has an effect on Eq.(6) to calculate the
shape of a bag. Thus the static instability is likely to occur, the under-relaxation of AT, Af4
is recommended.

2.2 Shape Change due to Pressure Change

Suppose that the shape of the bag and the tensile force are given. The shape and the ten-
sion will be changed if the pressure changes in a certain portion of the bag. If the solution will
be sought by using the prescribed method when the pressure is changed, the computational
burden will be larger because the iteration must be performed in each case. If we want to
solve non-linear problem, the prescribed method has to be used. However when the amount
of the pressure change is small, the linearization of the problem is useful.

We consider the changes of T and 6,4 due to the pressure change. The point (z(L), y(L))
must be (zg,yp) even if the pressure changes.

z(L)—zp = 0
y(L) —ys

Il
=)
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in which z(L), y(L) are the function of p, T and 4. The differentials of the above equations
are

0z(L) O0z(L) oz(L)

% dp+ —==dT + . ddy, = 0
oy(L) dy(L) oy(L) _
5 dp + —=odT + — == 0, a8, = 0. (9)

From the above equations, we can obtain dT" and df4 as follows,

ar | _ [ wu)7 (e
{ df4 } =7 aw ad) iCz (10)
arT 68 4 .

Eq.(9) and Eq.(10) were written formally, and it is not so simple because dp is a function
of I. Let’s represent the equations more precisely. Because dp(l) is a function, z(l), y(l) are
functionals, so the derivatives of functionals with respect to a function can be obtained in
distribution sense. The shape changes due to dp(l) can be obtained by looking for the changes
due to the pressure change by an amount of €,6( — s) at one point [ = s, and multiplying the
amplitude of pressure change dp(s), and by integrating them from 0 to L,

ax(L)d — L hm ax(L)P=P+€p

8(1—s)
dp(s)ds.
Op 0 &0 Oep p(s)ds

For y(L), the same scheme can be used. And from Eq.(3) and Eq.(4),

5(I(l) + Zy(l))
- / {/ T fo (Po—p)dut0a4) (% /Ov —6(u — s)du) dv} dp(s)ds
_ /O { / [ st S dv} dp(s)ds. (11)

The partial differentials with respect to 7 and 64 can be written as follows by using Eq.(3),(4).

oz() +iy(l)) _ /‘ Gl [ (s -p(u))dut0a] o

ar 0
i [ - pla))du (~ ;) do
A(z(l) +iy(1)) _ ! i(& [ (po—p(u))dut6a];
T = /Oe T Jo idv. (12)

Because z(!), y(!) are the functions of p, T, 6,4, the change of the bag’s shape becomes

) 8 )
dz(l) = (%dT + C,)Tx‘d@,1 + a‘”dp>

_ (9y Jy oy
dy(l) = (aTdT+aeAd0A+a )
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The third term in the above equation would be sought as explained above. The above equa-
tions can be written by using the result of Eq.(10).

Oz or oz )| &k 2l ] - %=(L) gy,
dr = — _—d — —_— aT a0 8,
™ {3T 09A} am at || o
= L -dp, (13)
- q-1
By By ay} i) ook 2L gp
d = —dp—- {_____ A% orT a9
VT g T\ar ae.f | 2w ab ot g
= L, dp,

where L, L, are the linear operators.

3. FORMULATION

The boundary condition on the surface of a rigid body is well known and simple, but on
the surface of a flexible body, like a pressurized bag, the boundary condition has a complicated
nature. The hydrodynamic pressure makes the bag change its shape, and the change of a bag
makes the hydrodynamic pressure changed, and vice versa. So the boundary type is a moving
boundary like the free surface boundary, and both the dynamic and the kinematic conditions
must be applied.

3.1 Linear Radiation Problem

We treat the problem when the end points of a bag oscillate. As the end points move, the
bag tends to move like a rigid body, but actually the bag cannot move as a rigid body because
the pressure outside varies and the surface of the bag deforms. Denote the displacement of
the bag from the static equilibrium position as dx, dy, and the displacement of a rigid body
which initially has the same shape with the bag as dXg,dYg. When the end points move,
the displacement of the surface is related with the dynamic condition.

p=—pgy—p¢ for y<O.

The displacement of the surface of the bag depends upon the following two factors: the effect
of the movement of the end points, and the one due to pressure changes. The displacement
dy can be written as

dy = L, -dp+dYg
—pgLy - dy — pL; - dpe +d¥g

dy = I + pgL;] "' [~pL} - d, + dY]), (14)
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in which [ is the identity operator and L; is an operator which is reduced from Ly by ignoring
the part of y > 0. Similarly dx can be obtained as follows,

dr = L, -dp+dXg
= —pglidy — pLyd¢: +dXg
—pLy[I + pgL;] " déy
—pgLi[I + pgL:)~'dYg + dXp. (15)

Only the portion y < 0 is required to solve the boundary value problem. Examining the
above two equations closely, we know that the portion y > 0 has no effect on the portion
y < 0, because the pressure remains constant over the portion y > 0. Thus we can rewrite
the equations only for y < 0.

dz* = —pl[I + pgly)~'dee — pgla[I + pgL,) ' dY5 + d X}
dy* = [I+pgLy]"'[-pLyds: + dY], (16)

where L, L, are L,, L, defined only on the portion y < 0. Explaining the operators L*,L
using Eq.(11) and Eq.(13), L* is the operator in which dp has a non-zero value for y < 0 and
zero for y > 0, and L* performs the operation only for ¥ < 0 among the operation of L*.

The kinematic condition is the condition that the normal component of the velocity of a
bag’s surface must be the same as the normal component of the fluid velocity. Thus,

bn = Vp-il=n,2;+ nyy;‘
Ny X g, + [Ny — nepglo)[I + pgly) Y5,
~[neplall + pgly] ™" + nypll + pgly|~'Ly)bx

= N Xp + CyYg, — Codu, (17)
where
¢, = [ny — ngpgle][l + PgLy]_l
Cy = [naols|l + pg'—y]_l + ”yP[I + ngy]_lLy]

As shown above, the boundary condition can be represented not point-wisely but globally.
The boundary value problem is summarized as follows.

Vipg = 0 in fluid domain
$y+1/gdu = 0 on y=10 (18)
¢n + C¢¢tt = nxXEt + CyYE*'t
on the surface of the bag,

and an appropriate radiation condition. Once the solution of the above problem is obtained,
we can calculate the pressure on the surface of the bag from the following equation.

dp = —pgdy— pde;
= —p[I + pgL, ' {9dYE + d¢;} for y<O. (19)
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The first term of the above equation is static pressure and the second term is hydrodynamic
pressure. Substituting the above equation into Eq.(13), we can obtain the shape change
of the bag, and into Eq.(10), the tension and 4. The change of 85 can be calculated by
differentiating Eq.(3) and substituting Eq.(10) into this resulting equation.

The dynamic force acting on the point A is, in z-direction

fza = (T +dT)cos(0a+ dbs) — T cosby
= —Tsinf,4d04 + cos04dT, (20)

and in y-direction

fva = (T +dT)sin(64 + dfs) — T'sinf,
= T cos 9Ad0A + sin 9AdT (21)

The force on the point B can be calculated similarly, and so the heave and sway forces and
the roll moment acting on the bag are obtained.

3.2 Numerical Implementation

The original boundary-value problem is replaced by the following integral equation using
Green’s identity

#(P) = [{Gaa(P,Q)4(Q) — G(P,Q)én(@)}4S(Q),

where P is the field point and @ source point, and G(P,Q) is the fundamental solution of
Laplace equation which satisfies the free surface boundary condition.[3] First we discretize
the boundary surface and assume that the values of ¢, ¢, are constant over each segment
and equal to the values at midpoint. Next by performing the integrations over each segment
analytically, the above integral equation reduces to the following matrix equation.

{¢} = [Gnl{8} — [Gl{¢n} (22)

When we assume the motion is time harmonic, we obtain the following equation by substi-
tuting the boundary condition into the above equation.

[I -Gy +w2GC¢]{¢} = _[G]{anE,'t + CyYEt}' (23)

After discretization, the operator Cy and Cy turn into matrices and ng, n, diagonal matrices.
Once the solution of the above equation is found, the pressure on the surface of a bag can be
calculated by Eq.(19).

4. NUMERICAL RESULTS

All calculations were carried out with a single precision on the i386 based PC. The length
of the bag was divided into 100 elements. The dimensionless parameters are defined as follows:
perimeter length L/d , submerged depth depth/d , volume inside V' = V/d? , submerged area
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A’ = A/d* | pressure inside p' = py/pgd , tension T' = T/pd , frequency w/4/g/d , added

mass a/pd? , damping coefficient b/ pdﬂ/gﬁ.

In Fig.2, the shapes of a bag with various submerged depth are shown. The submerged
depth is defined such that the depth is zero when the bag touches the free surface and then
the depth is defined as the length the point A goes down. As expected, the bag is more
flexible as the pressure inside the bag becomes smaller.

In Fig.3, the static properties are shown. As the depth grows, the volume inside the bag
decreases, the angle increases and the tension decreases. The angle must have the value less
than 7 in this scheme, so the depth cannot become larger than the value shown in the figure.

In Fig.4, the restoring force is shown in comparison with the result for the rigid body.
Restoring ratio ‘1’ means that the restoring of a bag is the same with the restoring of the
rigid body which has the same shape with the bag. The restoring ratio decreases as the
pressure decreases and the depth increases.

In Fig.5 through Fig.8, the added mass and the damping coefficient of a bag are shown.
In calculation of the hydrodynamic forces, the forces are obtained by direct integration of
the hydrodynamic pressure on the surface of the bag, because the force directly integrated
and by Eq.(20) have the same value, and there is some kind of numerical error in the force
from Eq.(20). The added mass of a bag is so small except in low frequency region, and in
some region becomes negative. There are many cases in which the negative added mass can
be obtained, such as the motions in restricted water and near the wall, and the multi-body
motions. So this negative added mass is not surprising and the terminology, the added mass,
is not appropriate in those cases. When the pressure is high, the damping is close to that of
rigid body, but as the pressure decreases, it decreases except in low frequency sway mode and
have a different behavior. As seen in Eq.(23), the added mass and the damping coeflicient
vanishes as the frequency goes to infinity.

The hydrodynamic force can be represented with added mass and damping coefficient for
a sinusoidal motion with frequency w as follows,

Force = —w?a + whi

Therefore if the added mass or the damping coefficient has non-zero value at infinite frequency,
the force at infinite frequency also has an infinite value. So in the case of non-zero added mass
or damping at infinite frequency, the body must give infinite energy to a fluid to maintain
oscillation at infinite frequency. This is the case of a rigid body. But the bag has a different
mechanism from a rigid body. The pressure acting on a fluid is limited and this may be
several times of the pressure inside a bag. Even if it may have a large value, the pressure
and the force are limited by a certain finite value. Thus the added mass and damping cannot
have a non-zero value at infinite frequency, and decrease to zero as the frequency increases to
infinity.

5. CONCLUSIONS

In this paper, the hydrodynamic problem was treated when a bag filled with pressurized
air submerges partially in the water and the end points of it oscillate. Different from the case
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of a rigid body, this problem has some distinct hydrodynamic features: both the kinematic
and dynamic conditions are required for the boundary condition on the surface of a bag
because the surface of a bag can be deformed by the pressure acting on it, and furthermore
the boundary condition cannot be represented locally but globally.

In this paper, this problem was formulated and the numerical calculations were carried
out. Through this work, the following conclusions are drawn.

The boundary condition on the bag is a mixed type and represented globally.

The static restoring force becomes smaller than that of rigid body as the pressure
inside goes down or the submerged depth becomes larger.

In the low frequency region, the added mass and the damping coefficient of a bag
have values close to those of rigid body. As the frequency becomes larger they
have the different behavior compared with those of rigid body, and the added
mass becomes negative in some high frequency region. And the added mass
and the damping coeflicient vanish as the frequency goes to infinity.

The added mass and the damping coefficient are smaller than those of rigid body
except the sway damping coefficient at low frequency.

Author hopes that the further study will be taken including the compressibility of the air,
the wall to block ‘fling around’ of the bag and a forward speed effect.
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Figure 1: Coordinate system and the bag
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Figure 2: The shape of a bag with various submerged depths
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Figure 3: The static properties of a bag(p’ pressure inside a bag, V' volume inside a bag, Al
submerged area, 7' tension, All are nondimensional values)
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Figure 4: The restoring force of a bag, non-dimensionalized with the restoring force of the
rigid body which is the same in shape
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Figure 5: Added mass and damping of a bag when the non-dimensionalized pressure is 1.0



Gyeong-Joong Lee 153

Sway Added Mass & Damping
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Figure 6: Added mass and damping of a bag when the non-dimensionalized pressure is 0.7
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Sway Added Mass & Damping
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Figure 7: Added mass and damping of a bag when the non-dimensionalized pressure is 0.5
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Figure 8: Added mass and damping of a bag when the non-dimensionalized pressure is 0.3



