• Title/Summary/Keyword: surface geometry

Search Result 1,292, Processing Time 0.033 seconds

Optimal Design of Optical Flying Head for Near-Field Recording (NFR 방식 Optical Flying Head의 형상 최적설계)

  • 김석훈;윤상준;최동훈;정태건;박진무;김수경
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.1165-1169
    • /
    • 2003
  • This paper presents an approach to optimally design the air-bearing surface (ABS) of the optical flying head for near-field recording technology (NFR). NFR is an optical recording technology using very small beam spot size by overcoming the limit of beam diffraction. One of the most Important problems in NFR is a head disk interface (HDI) issue over the recording band during the operation. A multi-criteria optimization problem is formulated to enhance the flying performances over the entire recording band during the steady state. The optimal solution of the slider, whose target flying height is 50 nm, is automatically obtained. The flying height during the steady state operation becomes closer to the target values than those fur the initial one. The pitch and roll angles are also kept within suitable ranges over the recording band. Especially, all of the air-bearing stiffness are drastically increased by the optimized geometry of the air bearing surface.

  • PDF

Shape Optimization of A Twist Mixing Vane in Nuclear Fuel Assembly (핵연료 봉다발내 비틀린 혼합날개의 형상최적설계)

  • Jung, Sang-Ho;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.4
    • /
    • pp.7-13
    • /
    • 2009
  • The purposes of present work are to analyze the convective heat transfer with three-dimensional Reynolds-averaged Navier-Stokes analysis, and to optimize shape of the mixing vane using the analysis results. Response surface method is employed as an optimization technique. The objective function is defined as a combination of inverse of heat transfer rate and friction loss. Two bend angles of mixing vane are selected as design variables. Thermal-hydraulic performances have been discussed and optimum shape has been obtained as a function of weighting factor in the objective function. The results show that the optimized geometry improves the heat transfer performance far downstream of the mixing vane.

A Numerical Simulation for Contractive and Dilative Periodic Motion on Axisymmetric Body

  • Kim, Moon-Chan
    • Journal of Ship and Ocean Technology
    • /
    • v.3 no.1
    • /
    • pp.1-11
    • /
    • 1999
  • Numerical simulation for the axisymmetric body with contractive and dilative periodic motion is carried out. The present analysis shows that a propulsive force can be obtained in highly viscous fluid by the contractive and dilative motion of axisymmetric body. An axisymmetric code is developed with unstructured grid system for the simulation of complicated motion and geometry. It is validated by comparing with the results of Stokes approximation with the problem of uniform flow past a sphere in low Reynolds number($R_n$ = 1). The validated code is applied to the simulation of contractive and dilative periodic motion of body whose results are quantitatively compared with the two dimensional case. The simulation is extended to the analysis of waving surface with projecting part for finding out the difference of hydrodynamics performance according to variation of waving surface configuration. The present study will be the basic research for the development of the propulsor of an axisymmetric micro-hydro-machine.

  • PDF

pH-Dependent Surface-enhanced Raman Scattering Analysis of Maleimide and Succinimide on Ag Nanocolloidal Surfaces

  • Joo, Sang-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.9
    • /
    • pp.1761-1764
    • /
    • 2008
  • The adsorption structure and binding of maleimide (MI) and succinimide (SI) on silver nanocolloidal surfaces have been comparatively investigated by means of pH-varied surface-enhanced Raman scattering (SERS). The two molecules appeared not to adsorb onto Ag surfaces at pH values below 5. The appearance of a ring ν (CH) band at ~3100 $cm^{-1}$ denoted the standing geometry of MI’s aromatic ring on Ag. The absence or weakness of in-plane vibrational modes of MI and SI also supported a perpendicular orientation of MI and SI on Ag from the electromagnetic selection rule. Density functional theory (DFT) calculations were employed to examine the vibrational frequencies of MI’s and SI’s neutral and anionic states.

SHAPE OPTIMIZATION OF A Y-MIXING VANE IN NUCLEAR FUEL ASSEMBLY (핵연료 봉다발내 Y 혼합날개의 형상최적설계)

  • Jung, S.H.;Kim, K.Y.;Kim, K.H.;Park, S.K.
    • Journal of computational fluids engineering
    • /
    • v.14 no.2
    • /
    • pp.1-8
    • /
    • 2009
  • The purposes of present work are to analyze the convective heat transfer with three-dimensional Reynolds-averaged Navier-Stokes analysis, and to optimize shape of the mixing vane taken tolerance into consideration by using the analysis results. Response surface method is employed as an optimization technique. The objective function is defined as a combination of heat transfer rate and inverse of pressure drop. Two bend angles of mixing vane are selected as design variables. Thermal-hydraulic performances have been discussed and optimum shape has been obtained as a function of weighting factor in the objective function. The results show that the optimized geometry improves the heat transfer performance far downstream of the mixing vane.

Numerical analysis of three-dimensional sloshing flow using least-square and level-set method (최소자승법과 Level-set 방법을 이용한 3차원 슬로싱 유동의 수치해석)

  • Choi, Hyoung-Gwon
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2401-2405
    • /
    • 2008
  • In the present study, a three-dimensional least square/level set based two-phase flow code was developed for the simulation of three-dimensional sloshing problems using finite element discretization. The present method can be utilized for the analysis of a free surface flow problem in a complex geometry due to the feature of FEM. Since the finite element method is employed for the spatial discretization of governing equations, an unstructured mesh can be naturally adopted for the level set simulation of a free surface flow without an additional load for the code development except that solution methods of the hyperbolic type redistancing and advection equations of the level set function should be devised in order to give a bounded solution on the unstructured mesh. From the numerical experiments of the present study, it is shown that the proposed method is both robust and accurate for the simulation of three-dimensional sloshing problems.

  • PDF

A Stuty on the Dynamic Response of an Axisymmetric Buoy in Regular Waves (축대칭 부표의 규칙파중 운동특성에 대한 연구)

  • Key-Y.,Hong;Hyo-Chul,Kim;Hang-S.,Choi
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.23 no.3
    • /
    • pp.1-9
    • /
    • 1986
  • Herein the dynamic response of an axisymmetric buoy to regular wave is studied within linear potential theory. The buoy has a particular geometry so that it should experience minimum wave-exiting force on the vertical direction at a precribed wave number in water of finite depth. Invoking the Green's theorem a velocity potential is generated by distributing pulsating sources and doublets on the immersed surface of the buoy at its mean position. Hydrodynamic forces and moments are obtained approximately by summation of the products of linear pressure and directional mesh area over the immersed surface. Model tests are carried out to measure the wave-exciting forces, hydrodynamic forces and motion responses. The experimental results in general agree fairly well with the numerical ones. From the analytical and experimental works it is found that the pitching motion and its coupling effect affect significantly the motion characteristics of the freely-floating axisymmetric buoy in regular waves.

  • PDF

Design of 2-Dimensional Blade Section for Prescribed Velocity Distribution by a Vortex Based Panel Method (표면양력판 이론에 의한 요구 속도 분포를 갖는 2차원 날개 단면의 설계)

  • K.J. Cho;G.I. Choi;J.D. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.2
    • /
    • pp.69-76
    • /
    • 1991
  • A design method based on the surface vorticity distribution is developed to generate a two-dimensional blade section for prescribed velocity distribution in potential flow. The boundary condition used to determine the strength of vorticity distribution requires that the surface of blade section should be a streamline of the resulting flow. In order to obtain the required final geometry of a two-dimensional blade section, an iterative procedure is used. A computer program is developed and several numerical results are presented.

  • PDF

Simulation of Vehicle-Track-Bridge Dynamic Interaction by Nonlinear Hertzian Contact Spring and Displacement Constraint Equations (비선형 헤르쯔 접촉스프링과 변위제한조건식의 적용에 의한 차량-궤도-교량 동적상호작용 수치해석기법)

  • Chung Keun-Young;Lee Sung-Uk;Min Kyung-Ju
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.191-196
    • /
    • 2005
  • In this study, to describe vehicle-track-bridge dynamic interaction phenomena with 1/4 vehicle model, nonlinear Hertzian contact spring and nonlinear contact damper are introduced. In this approach external loads acting on 1/4 vehicle model are self weight of vehicle and geometry information of running surface. The constraint equation on contact surface is implemented by Penalty method. Also, to improve the numerical stability and to maintain accuracy of solution, the artificial damper and the reaction from constraint violation are introduced. A nonlinear time integration method, in this study, Newmark method is adopted for both equations of vehicles and structure. And to reduce the error caused by inadequate time step size, adaptive time-stepping technique is partially introduced. As the nonlinear Hertzian contact spring has no resistance to tensile force, the bouncing phenomena of wheelset can be described. Thus, it is expected that more versatile dynamic interaction phenomena can be described by this approach and it can be applied to various railway dynamic problems.

  • PDF

Optimal shape design of contact systems

  • Mahmoud, F.F.;El-Shafei, A.G.;Al-Saeed, M.M.
    • Structural Engineering and Mechanics
    • /
    • v.24 no.2
    • /
    • pp.155-180
    • /
    • 2006
  • Many applications in mechanical design involve elastic bodies coming into contact under the action of the applied load. The distribution of the contact pressure throughout the contact interface plays an important role in the performance of the contact system. In many applications, it is desirable to minimize the maximum contact pressure or to have an approximately uniform contact pressure distribution. Such requirements can be attained through a proper design of the initial surfaces of the contacting bodies. This problem involves a combination of two disciplines, contact mechanics and shape optimization. Therefore, the objective of the present paper is to develop an integrated procedure capable of evaluating the optimal shape of contacting bodies. The adaptive incremental convex programming method is adopted to solve the contact problem, while the augmented Lagrange multiplier method is used to control the shape optimization procedure. Further, to accommodate the manufacturing requirements, surface parameterization is considered. The proposed procedure is applied to a couple of problems, with different geometry and boundary conditions, to demonstrate the efficiency and versatility of the proposed procedure.