DOI QR코드

DOI QR Code

pH-Dependent Surface-enhanced Raman Scattering Analysis of Maleimide and Succinimide on Ag Nanocolloidal Surfaces

  • Published : 2008.09.30

Abstract

The adsorption structure and binding of maleimide (MI) and succinimide (SI) on silver nanocolloidal surfaces have been comparatively investigated by means of pH-varied surface-enhanced Raman scattering (SERS). The two molecules appeared not to adsorb onto Ag surfaces at pH values below 5. The appearance of a ring ν (CH) band at ~3100 $cm^{-1}$ denoted the standing geometry of MI’s aromatic ring on Ag. The absence or weakness of in-plane vibrational modes of MI and SI also supported a perpendicular orientation of MI and SI on Ag from the electromagnetic selection rule. Density functional theory (DFT) calculations were employed to examine the vibrational frequencies of MI’s and SI’s neutral and anionic states.

Keywords

References

  1. Vicente, G.; Colon, L. A. Anal. Chem. 2008, 80, 1988 https://doi.org/10.1021/ac702062u
  2. Romanini, D. W.; Francis, M. B. Bioconjugate Chem. 2008, 19, 153 https://doi.org/10.1021/bc700231v
  3. Xia, S.-J.; Wieland, M.; Brunner, S. J. Colloid Interface Sci. 2005, 290, 172 https://doi.org/10.1016/j.jcis.2005.04.014
  4. Grubisha, D. S.; Lipert, R. J.; Park, H.-Y.; Driskell, J.; Porter, M. D. Anal. Chem. 2003, 75, 5936 https://doi.org/10.1021/ac034356f
  5. Krishnakumar, V.; John Xavier, R.; Chithambarathanu, T. Spectrochimica Acta Part A 2005, 62, 931 https://doi.org/10.1016/j.saa.2005.02.052
  6. Ljiljana, F.; Grondin, A.; Ewen Smith, W.; Graham, D. Chem. Comm. 2002, 2100
  7. Ulman, A. J. Mater. Edu. 1989, 205, 11
  8. Ulman, A. Acc. Chem. Res. 2001, 34, 855 https://doi.org/10.1021/ar0001564
  9. Chalmers, M.; Griffiths, P. R. Handbook of Vibrational Spectroscopy; John Wiley & Sons: New York, 2002
  10. Fleischmann, H.; Weaver, P. J.; McQuillan, A. J. Chem. Phys. Lett. 1974, 26, 163 https://doi.org/10.1016/0009-2614(74)85388-1
  11. Chang, R. K.; Furtak, T. E. Surface-enhanced Raman Scattering; Plenum press: New York, 1982
  12. Baker, G. A.; Moore, D. S. Anal. Bioanal. Chem. 2005, 382, 1751 https://doi.org/10.1007/s00216-005-3353-7
  13. Jones R. O.; Gunnarson, O. Rev. Mod. Phys. 1989, 61, 689 https://doi.org/10.1103/RevModPhys.61.689
  14. Aroca, R.; Scraba, M.; Mink, J. Spectrochim. Acta A 1991, 47, 263 https://doi.org/10.1016/0584-8539(91)80098-4
  15. Parker, S. F. Spectrochim. Acta A 2006, 63, 544 https://doi.org/10.1016/j.saa.2005.06.001
  16. Lee, P. C.; Meisel, D. J. Phys. Chem. 1982, 86, 3391 https://doi.org/10.1021/j100214a025
  17. Joo, S.-W. Bull. Korean Chem. Soc. 2007, 28, 1405 https://doi.org/10.5012/bkcs.2007.28.8.1405
  18. Cho, K.-H.; Joo, S.-W. Bull. Korean Chem. Soc. 2008, 29, 69 https://doi.org/10.5012/bkcs.2008.29.1.069
  19. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, Jr., J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 03, Revision A.1; Gaussian, Inc.: Pittsburgh, PA, 2003
  20. Darnall, K. R.; Townsend, L. B.; Robins, R. K. PNAS 1967, 57, 548 https://doi.org/10.1073/pnas.57.3.548
  21. Notari, R. E. J. Pharmaceutical Sci. 1968, 58, 1064 https://doi.org/10.1002/jps.2600580905
  22. Lim, J. K.; Joo, S.-W. Appl. Spectrosc. 2006, 60, 847 https://doi.org/10.1366/000370206778062183

Cited by

  1. Synthesis and characterization of imidized poly(styrene-maleic anhydride) nanoparticles in stable aqueous dispersion vol.23, pp.3, 2010, https://doi.org/10.1002/pat.1871
  2. SERS Analysis of Self-Assembled Monolayers of DNA Strands on Gold Surfaces vol.31, pp.1, 2008, https://doi.org/10.5012/bkcs.2010.31.01.213
  3. Gold Nanoparticle-Based Detection of Hg(II) in an Aqueous Solution: Fluorescence Quenching and Surface-Enhanced Raman Scattering Study vol.32, pp.2, 2011, https://doi.org/10.5012/bkcs.2011.32.2.519
  4. Uniform Periodic Bowtie SERS Substrate with Narrow Nanogaps Obtained by Monitored Pulsed Electrodeposition vol.12, pp.32, 2020, https://doi.org/10.1021/acsami.0c09357