• Title/Summary/Keyword: surface forces

Search Result 1,168, Processing Time 0.042 seconds

Seismic surface waves in a pre-stressed imperfectly bonded covered half-space

  • Negin, Masoud
    • Geomechanics and Engineering
    • /
    • v.16 no.1
    • /
    • pp.11-19
    • /
    • 2018
  • Propagation of the generalized Rayleigh waves in an elastic half-space covered by an elastic layer for different initial stress combinations and imperfect contact conditions is investigated. Three-dimensional linearized theory of elastic waves in initially stressed bodies in plane-strain state is employed, the corresponding dispersion equation is derived and an algorithm is developed for numerical solution to this equation. Numerical results on the influence of the initial stress patterns and on the influence of the contact conditions are presented and discussed. The case where the external forces are "follower forces" is considered as well. These investigations provide some theoretical foundations for the study of the near-surface waves propagating in layered mechanical systems and can be successfully used for estimation of the degree of the bonded defects between layers, fault characteristics and study of the behavior of seismic surface waves propagating under the bottom of the oceans.

Friction Reduction Properties of Evaporation Coated Petroleum and Silicone Oil Lubricants (증발 코팅법으로 증착된 광유와 실리콘 오일 윤활제의 마찰 저감 특성)

  • Yoo, Shin Sung;Kim, Dae Eun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.8
    • /
    • pp.864-869
    • /
    • 2013
  • As the size of mechanical components decreases, capillary forces and surface tension become increasingly significant. A major problem in maintaining high reliability of these small components is that of large frictional forces due to capillary action and surface tension. Unlike the situation with macro-scale systems, liquid lubrication cannot be used to reduce friction of micro-scale components because of the excessive capillary and drag forces. In this work, the feasibility of using evaporation to coat a thin film of organic lubricant on a solid surface was investigated with the aim of reducing friction. Petroleum and silicone oils were used as lubricants to coat a silicon substrate. It was found that friction could be significantly reduced and, furthermore, that the effectiveness of this method was strongly dependent on the coating conditions.

Effect of Cutting Tool Materials on Surface Roughness and Cutting Forces in Machining of $Al-Si_3N_4$ Composite Produced by Powder Metallurgy

  • Ozcatalbas, Yusuf;Bahceci, Ersin;Turker, Mehmet
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1052-1053
    • /
    • 2006
  • Aluminum-based composites reinforced with various amounts of $\alpha-Si_3N_4$ were produced by powder metallurgy (P/M). The machinability properties of $MMC_s$ were determined by means of cutting forces and surface roughness. Machining tests were carried out by using PCD and K10 tools. Increasing of $Si_3N_4$ volume fraction in the matrix resulted in a decrease of the surface roughness and turning forces. PCD cutting tools showed better cutting performance than K10 tools.

  • PDF

Effect of 11-Mercaptoundecylphosphoric-acid Layer Formation on Gold Surfaces Interacting with Titanium Dioxide Surfaces

  • Park, Jin-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.10
    • /
    • pp.2861-2866
    • /
    • 2010
  • We studied effects of the 11-Mercaptoundecylphosphoric-acid layer formation on gold surfaces that have the interactions with the titanium dioxide surface for design of gold- titanium dioxide distribution. The atomic force microscope (AFM) was used to measure forces between the surfaces as a function of the salt concentration and pH value. The forces were analyzed with the DLVO (Derjaguin-Landau-Verwey-Overbeek) theory, to evaluate the potential and charge density of the surfaces quantitatively for each salt concentration and each pH value. The interpretation for the evaluation was performed with the law of mass action and the ionizable groups on the surface.

2-dimensional Hydrodynamic Forces of Heaving, Swaying and Rolling Cylinders on a Free Surface of a Water of Finite Depth

  • Rhee, K.P.
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.14 no.3
    • /
    • pp.13-22
    • /
    • 1977
  • The hydrodynamic forces acting on a forced oscillating 2-dimensional cylinder on a free surface of a fluid of a finite depth are calculated by distributing singularities on the immersed body surface. And the Haskind-Newman relation in a fluid of a finite depth is derived. The wave exciting force of the cylinder to an oscillation is also calculated by using the above relation. The method is applied to a circular cylinder swaying in a water of finite depth, and then, to a rectangular cylinder heaving, swaying, and rolling. The results of above cases give a good agreement with those by earlier investigators such as Bai, Keil, and Yeung. Also, this method is applied to a Lewis form cylinder with a half beam-to-draft ratio of 1.0 and a sectional area coefficient of 0.941, and to a bulbous section cylinder which is hard to represent by a mapping function. The results reveal that the hydrodynamic forces in heave increase as the depth of a water decrease, but in sway or roll, the tendency of the hydrodynamic forces is difficult to say in a few words. The exciting force to heave for a bulbous section cylinder becomes zero at two frequencies. The added mass moment of inertia for roll is seemed to mainly depend on the sectional shape than the water depth.

  • PDF

Equivalence Principles Based Skin Deformation of Character Animation

  • You, L.H.;Chaudhry, E.;You, X.Y.;Zhang, Jian J.
    • International Journal of CAD/CAM
    • /
    • v.9 no.1
    • /
    • pp.61-69
    • /
    • 2010
  • Based on the equivalence principles of physical properties, geometric properties and externally applied forces between a surface and the corresponding curves, we present a fast physics and example based skin deformation method for character animation in this paper. The main idea is to represent the skin surface and its deformations with a group of curves whose computation incurs much less computing overheads than the direct surface-based approach. The geometric and physical properties together with externally applied forces of the curves are determined from those of the surface defined by these curves according to the equivalence principles between the surface and the curves. This ensures the curve-based approach is equivalent to the original problem. A fourth order ordinary differential equation is introduced to describe the deformations of the curves between two example skin shapes which relates geometric and physical properties and externally applied forces to shape changes of the curves. The skin deformation is determined from these deformed curves. Several examples are given in this paper to demonstrate the application of the method.

On the Nonlinear Hydrodynamic Forces due to Large Amplitude Forced Oscillations (대진폭강제동요시(大振幅强制動搖時)의 비선형유체력(非線型流體力)에 관한 연구(硏究))

  • J.H.,Hwang;Y.J.,Kim;S.Y.,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.23 no.2
    • /
    • pp.1-13
    • /
    • 1986
  • The nonlinear hydrodynamic forces acting on a two-dimensional circular cylinder, oscillating with large amplitude in the free surface, are calculated by using the Semi-Lagrangian Time-Step-ping Method used by O.M. Faltinsen. In present calculation the position and the potential value of free surface are calculated using the exact kinematic and dynamic free surface boundary condition. At each time step an integral equation is solved to obtain the value of potential and normal velocity along the boundaries, consisting of both the body surface and the free surface. Some effort was devoted to the elimination of instability arising in the range of high frequency. Numerical simulations were performed up to the 3rd or 4th period which seems to be enough for the transient effect to die out. Each harmonic component and time-mean force are obtained by the Fourier transform of forces in time domain. The results are compared with others' experimental and theoretical results. Particularly, the calculation shows the tendency that the acceleration-phase 1st-harmonic component(added mass) increases as the motion amplitude increases and a reverse tendency in the velocity-phase 1st-harmonic component(damping coefficient). The Yamashita's experimental result also shows the same tendency. In general, the present result show relatively good agreement with the Yamashita's experimental result except for the time-mean force.

  • PDF

Evaluation of Flow and Transport Model in Integrated Surface and Subsurface Systems

  • Kim Seong-Gyun;Park Yeong-Jin;Bae Gwang-Ok;Lee Gang-Geun
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.324-327
    • /
    • 2005
  • HydroSphere can simulate integrated surface and subsurface flow and transport. Using field experiments conducted at Canadian Forces Base Borden, in Ontario, Canada, by Abdul [1985], HydroSphere is evaluated to verify its capabilities for fully integrated surface and subsurface flow modeling. And a field scale simulation will be performed with HydroSphere, using rainfall and surface and subsurface hydrogen isotope analysis data measured at small basin, in Yu-sung, by Park et al. [2003], to verify its capabilities for fully integrated surface and subsurface flow and transport modeling.

  • PDF

Comparative Study of Biomechanical Left and Right Elbow Joint Extension Movements After Wheel Axle Application (윤축을 적용한 좌·우 주관절 신전 동작의 운동역학적 비교 연구)

  • Kim, Sung-Joo
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.4
    • /
    • pp.429-436
    • /
    • 2011
  • In this study, we have experimented with 9 players at the national delegate level. Although there were some differences in the average effects of 3 types of one-two straight movements after the application of wheel axle, there were no statistical differences in the case of surface reacting forces, electromyograms, and impact forces. When the right fist was impacted using the one-two straight movements and the wheel axle was applied with 3 segmentations, high impact forces were obtained for the pronation in the following order-72.01 $m/s^2$ (type 2), 70.93 $m/s^2$ (type 3), and 58.19 $m/s^2$ (type 1). Higher values of the surface reacting force were found for type 1 that did not exhibit pronation in the left foot, whereas in the case of the vertical direction of the right foot, type 2 with pronation exhibited higher values and impact forces. In the right electromyogram, high impact forces due to the activation of the muscular electric potential were obtained for lumbar erector (LE) spinae and triceps brachii (TB) with type 1; LE spina, latissimus dosi (LD), and upper trapezius (UT) with type 2; and brachioradialis (BR), UT, and rectus abdominal (RA) with type 3. Due to pronation and complex motions of the 3 pronation segmentations, the efficiency was higher for impacts due to one-two straight movements.

Characteristics of fluctuating lift forces of a circular cylinder during generation of vortex excitation

  • Kim, Sangil;Sakamoto, Hiroshi
    • Wind and Structures
    • /
    • v.9 no.2
    • /
    • pp.109-124
    • /
    • 2006
  • This paper describes the characteristics of the fluctuating lift forces when a circular cylinder vibrates in the cross-flow direction. The response characteristics on elastically supported the circular cylinder was first examined by a free-vibration test. Next, flow-induced vibrations obtained by the free-vibration test were reproduced by a forced-vibration test, and then the characteristics of the fluctuating lift forces, the work done by the fluctuating lift, the behavior of the rolling-up of the separated shear layers were investigated on the basis of the visualized flow patterns. The main findings were that (i) the fluctuating lift forces become considerably large than those of a stationary circular cylinder, (ii) negative pressure generates on the surface of the circular cylinder when the rolling-up of separated shear layer begins, (iii) the phase between the fluctuating lift force and the cylinder displacement changes abruptly as the reduced velocity $U_r$ increases, and (iv) whether the generating cross-flow vibration becomes divergent or convergent can be described based on the work done by the fluctuating lift force. Furthermore, it was found that the generation of cross-flow vibration can be perfectly suppressed when the small tripping rods are installed on the surface of the circular cylinder.