• Title/Summary/Keyword: surface extraction

Search Result 1,052, Processing Time 0.022 seconds

Comparison of Conventional Solvent Extraction, Microwave-Assisted Extraction, and Ultrasound-Assisted Extraction Methods for Paclitaxel Recovery from Biomass (바이오매스로부터 파클리탁셀 회수를 위한 전통적 용매 추출, 마이크로웨이브를 이용한 추출, 초음파를 이용한 추출 방법 비교)

  • Kim, Jin-Hyun
    • Korean Chemical Engineering Research
    • /
    • v.58 no.2
    • /
    • pp.273-279
    • /
    • 2020
  • In this study, conventional solvent extraction (CSE), microwave-assisted extraction (MAE), and ultrasound-assisted extraction (UAE) were compared for the recovery of paclitaxel from biomass. As a result of investigating the effect of the extraction solvent type (acetone, chloroform, ethanol, methanol, methylene chloride), methanol was the most suitable for all extraction methods. In the case of MAE and UAE using methanol, most of the paclitaxel (> 95%) was recovered by only one extraction. The recovery rate of paclitaxel increased with the increase of extraction temperature (25-45 ℃), microwave power (50-150 W), and ultrasonic power (180-380 W) for MAE and UAE. In addition, SEM analysis showed that the biomass surface structure was slightly corrugated in CSE, while in the MAE and UAE, it was very rough and destroyed by strong impact.

Determination of Optimal Conditions by Response Surface Methodology and Quality Characteristics of Water Extracts of Phellinus linteus (반응표면분석을 이용한 상황버섯 열수추출액의 최적 추출조건과 품질 특성)

  • Youn, Sun-Joo;Cho, Jun-Gu;Kwoen, Dae-Jun;Choi, Ung-Kyu;Kang, Sun-Chul
    • Applied Biological Chemistry
    • /
    • v.49 no.3
    • /
    • pp.215-220
    • /
    • 2006
  • Response surface methodology was implemented to determine an optimal extraction condition in Phellinus linteus water extract. Extraction was performed on 10 experimental conditions including independent variables such as extraction time $(1{\sim}5\;hrs)$ and water volume over sample (sample : $H_2O$ = 1 : $40{\sim}200$, W/V), color browning, reducing and total sugar, that were based on the significant levels of 10% of central composition design. Color browning, reducing and total sugar contents were found to be more affected when the water volume was increased rather than extraction time. Maximum extraction condition was acquired at extraction time of $3.0{\sim}4.5\;hrs$ and water volume of $40{\sim}58.2\;ml$. Being extracted at the optimal extraction condition two of the free sugars, sucrose (0.126%) and glucose (0.012%), were detected. Total content of the free amino acids was found to be $503.26\;{\mu}g%$. Among them, essential amino acid contents were revealed as 5.4%. One major peak from gel permeation chromatography contained polysaccharide(s) with the molecular weights of 10 KDa.

Study of Optimized Extraction Conditions for Simultaneous Anti-inflammatory and Antioxidant Activity of Artemisia iwayomogi using Response Surface Methodology (반응표면분석을 이용한 한인진의 항염 및 항산화 복합 활성 최적 추출 조건에 관한 연구)

  • Park, Dawon;Choi, Woo Seok;Lee, Chang Hyeon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.45 no.3
    • /
    • pp.319-331
    • /
    • 2019
  • This study was conducted to find a solvent, a extraction method and optimized conditions for Artemisia iwayomogi extract. which is effective to anti-inflammatory and antioxidant activity. A. iwayomogi extract by distilled water, ethanol, methanol, hexane and ethyl acetate using ultrasonic, high-pressure and supercritical extraction was investigated for NO inhibitory and DPPH radical scavenging activity. Extract obtained by ethanol and ultrasonic extraction method showed high NO production inhibitory activity, DPPH free radical scavenging activity and yield. Response surface methodology (RSM) was applied to find a optimized ultrasonic extraction conditions. Results showed that the optimum conditions for the higher yield were ethanol solvent of 45.71% concentration with extraction time and ultrasonic power of 63.33min and 308.84 W, respectively. This condition predicted 15.85% yield, but real yield was $16.40{\pm}0.28%$. The optimum conditions for simultaneous anti-inflammatory and antioxidant activity were established as ethanol concentration (80.81%), extraction time (90.00 min) and ultrasonic power (400.00 W). NO production inhibitory and antioxidant activity were $89.77{\pm}1.37%$ and $60.12{\pm}0.39%$, respectively. These results showed similar to the predicted values of 94.54%, 58.03% respectively.

Optimization of the Conditions of Flavonoid Extraction From Tartary Buckwheat Sprout Using Response Surface Methodology (반응표면분석법을 이용한 타타리메밀싹에서 플라보노이드 추출 최적화)

  • Shin, Jiyoung;Choi, Iseul;Hwang, Jinwoo;Yang, Junho;Lee, Yoonhyeong;Kim, So-i;Cha, Eunji;Yang, Ji-Young
    • Journal of Life Science
    • /
    • v.30 no.12
    • /
    • pp.1101-1108
    • /
    • 2020
  • Tartary buckwheat is a grain with many flavonoids, such as rutin, quercetin, kaempferol, and myricetin. This study aimed to optimize extraction conditions to maximize the rutin, quercetin, and myricetin contents of tartary buckwheat sprout extracts using response surface methodology. A BoxBehnken design containing 15 experiments was employed to evaluate the effects of extraction conditions, such as temperature (X1, 50~70℃), extraction time (X2, 5~9 hr), and ethanol concentration (X3, 60~90%). The coefficients of determination (R2) for all the dependent variables (extraction temperature, extraction time, and extraction ethanol concentration) were determined to be over 0.95, indicating significance. The p-value of the model in lack of fit was over 0.1 than means, indicating that the model was well predicted. The optimal extraction conditions for rutin, quercetin, and myricetin contents were obtained at X1 = 51.03, X2 = 6.62, and X3 = 69.16, respectively. Under these optimal conditions, the predicted rutin, quercetin, and myricetin contents were 808.467 ㎍/ml, 193.296 ㎍/ml, and 37.360 ㎍/ml, respectively. For the validation of the model, ten experiments were performed and the experimental rutin and quercetin contents were measured at 802.84±8.49 ㎍/ml, 193.76±2.80 ㎍/ml, and 34.84±0.43 ㎍/ml, respectively. The experimental rutin and quercetin contents were similar to the predicted contents, but the experimental myricetin content was lower than predicted.

Effect of Template Removal on Synthesis of Organic-Inorganic Hybrid Mesoporous MCM-48

  • Zhao, Ya Nan;Li, San Xi;Han, Chong-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3196-3202
    • /
    • 2012
  • Post-synthesis is used to synthesize organic hybrid inorganic mesoporous sieves. In this method, the activity and structure of the base sieve are crucial to obtain the definable hybrid materials. The chemical and physical properties of the base can be largely changed either by the final step of its synthesizing processes, by template removal which is accomplished with the oxidative thermal decomposition (burning) method or by solvent extraction method. In this paper we compared two methods for the post-synthesis of organic hybrid MCM-48. When the template was extracted with HCl/alcohol mixture, the final product showed larger pore size, larger pore volume and better crystallinity compared to the case of the thermal decomposition. The reactivity of the surface silanol group of template free MCM-48 was also checked with an alkylsilylation reagent $CH_2=CHSi(OC_2H_5)_3$. Raman and $^{29}Si$ NMR spectra of MCM-48 in the test reaction indicated that more of the organic group was grafted to the surface of the sample after the template was removed with the solvent extraction method. Direct synthesis of vinyl-MCM-48 was also investigated and its characteristics were compared with the case of post-synthesis. From the results, it was suggested that the structure and chemical reactivity can be maintained in the solvent extraction method and that organic grafting after the solvent extraction can be a good candidate to synthesize a definable hybrid porous material.

Water body extraction in SAR image using water body texture index

  • Ye, Chul-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.4
    • /
    • pp.337-346
    • /
    • 2015
  • Water body extraction based on backscatter information is an essential process to analyze floodaffected areas from Synthetic Aperture Radar (SAR) image. Water body in SAR image tends to have low backscatter values due to homogeneous surface of water, while non-water body has higher backscatter values than water body. Non-water body, however, may also have low backscatter values in high resolution SAR image such as Kompsat-5 image, depending on surface characteristic of the ground. The objective of this paper is to present a method to increase backscatter contrast between water body and non-water body and also to remove efficiently misclassified pixels beyond true water body area. We create an entropy image using a Gray Level Co-occurrence Matrix (GLCM) and classify the entropy image into water body and non-water body pixels by thresholding of the entropy image. In order to reduce the effect of threshold value, we also propose Water Body Texture Index (WBTI), which measures simultaneously the occurrence of repeated water body pixel pair and the uniformity of water body in the binary entropy image. The proposed method produced high overall accuracy of 99.00% and Kappa coefficient of 90.38% in water body extraction using Kompsat-5 image. The accuracy analysis indicates that the proposed WBTI method is less affected by the choice of threshold value and successfully maintains high overall accuracy and Kappa coefficient in wide threshold range.

Tritium extraction in aluminum metal by heating method without melting

  • Kang, Ki Joon;Byun, Jaehoon;Kim, Hee Reyoung
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.469-478
    • /
    • 2022
  • Tritium was extracted from tritium-contaminated aluminum samples by heating it in a high-temperature furnace at 200, 300, or 400 ℃ for 15 h. The extracted tritium was analyzed by using a liquid scintillation counter (LSC); the sample thicknesses were 0.4 and 2 mm. The differences in tritium extraction over time were also investigated by cutting aluminum stick samples into several pieces (1, 5, 10, and 15) with the same thickness, and subsequently heating them. The results revealed that there are most of the hydrated material based on tritium on the surface of aluminum. When the temperature was increased from 200 or 300 ℃-400 ℃, there are no large differences in the heating duration required for the radioactivity concentration to be lower than the MDA value. Additionally, at the same thickness, because the surface of aluminum is only contaminated to tritiated water, cutting the aluminum samples into several pieces (5, 10, and 15) did not have a substantial effect on the tritium extraction fraction at any of the applied heating temperatures (200, 300, or 400 ℃). The proportion of each tritium-release materials (aluminum hydrate based on tritium) were investigated via diverse analyses (LSC, XRD, and SEM-EDS).

Adaptive Extraction Method for Phase Foreground Region in Laser Interferometry of Gear

  • Xian Wang;Yichao Zhao;Chaoyang Ju;Chaoyong Zhang
    • Current Optics and Photonics
    • /
    • v.7 no.4
    • /
    • pp.387-397
    • /
    • 2023
  • Tooth surface shape error is an important parameter in gear accuracy evaluation. When tooth surface shape error is measured by laser interferometry, the gear interferogram is highly distorted and the gray level distribution is not uniform. Therefore, it is important for gear interferometry to extract the foreground region from the gear interference fringe image directly and accurately. This paper presents an approach for foreground extraction in gear interference images by leveraging the sinusoidal variation characteristics shown by the interference fringes. A gray level mask with an adaptive threshold is established to capture the relevant features, while a local variance evaluation function is employed to analyze the fluctuation state of the interference image and derive a repair mask. By combining these masks, the foreground region is directly extracted. Comparative evaluations using qualitative and quantitative assessment methods are performed to compare the proposed algorithm with both reference results and traditional approaches. The experimental findings reveal a remarkable degree of matching between the algorithm and the reference results. As a result, this method shows great potential for widespread application in the foreground extraction of gear interference images.

Optimization of Ethanol Extraction Conditions from Propolis (a Bee Product) Using Response Surface Methodology (반응표면분석법을 이용한 프로폴리스의 에탄올 추출조건 최적화)

  • Kim, Seong-Ho;Kim, In-Ho;Kang, Bok-Hee;Lee, Kyung-Hee;Lee, Sang-Han;Lee, Dong-Sun;Cho, So-Mi K.;Hur, Sang-Sun;Kwon, Taeg-Kyu;Lee, Jin-Man
    • Food Science and Preservation
    • /
    • v.16 no.6
    • /
    • pp.908-914
    • /
    • 2009
  • A central composite design was used to optimize extraction of propolis materials using ethanol. The independent variables in extraction experiments were ethanol concentration (50, 60, 70, 80, 90%, v/v) and extraction time (1, 2, 3, 4, and 5 h). Higher ethanol concentration and shorter extraction time increased total polyphenol content, but total polyphenol concentration began to decrease when ethanol concentration was higher than 80% (v/v). Ethanol concentration was more important than extraction time in optimization of total polyphenol content in propolis extracts. Electron-donating ability increased with ethanol concentration and shorter extraction time, with ethanol concentration being of greater significance. Antioxidant ability in extracts was optimal at an ethanol concentration of 65 - 75% and with an extraction time of 2.2 - 3.6 h. Nitrite-scavenging ability was increased with use of higher ethanol concentration and shorter extraction time. Total flavonoid content was maximized with an ethanol concentration of 68 - 82% and an extraction time of 2.4 - 3.7 h. Total flavonoid content was affected by both ethanol concentration and extraction time. By superimposition of contour plots, an ethanol concentration of 72 - 82% and an extraction time of 2.2 - 3.3 h were optimal for preparation of propolis extracts.

Optimization of Extraction Conditions of Antioxidant Activity and Bioactive Compounds from Rice Bran by Response Surface Methodology (반응표면분석법을 이용한 미강으로부터 항산화 활성 및 생리활성물질의 초음파 추출조건 최적화)

  • Gam, Da Hye;Jo, Jae Min;Jung, Hyun Jin;Kim, Jin Woo
    • Applied Chemistry for Engineering
    • /
    • v.29 no.6
    • /
    • pp.726-733
    • /
    • 2018
  • The rice's waste byproduct is known as a rice bran and produced annually about 400,000 to 600,000 tons. Most of the rice bran are used as a livestock feed or waste disposal, and needed to be used to produce high-added substances, such as bioactive materials. In this study, extraction conditions of the ultrasound-assisted extraction (UAE) of the rice bran were optimized using a statistically-based optimization. The influence of extraction variables including the extraction time ($X_1$), extraction temperature ($X_2$) and ethanol concentration ($X_3$) were investigated using the response surface methodology in order to determine optimum extraction conditions which maximize total phenolic compounds (TPC), total flavonoid compounds (TFC) and electron donating abilities (EDA). The optimal UAE from rice bran was achieved under the extraction temperature of $94.9^{\circ}C$, extraction time of 41.6 minute and ethanol concentration of 74.0% (v/v) with maximum yields of TPC 2.78 mg GAE/g DM, TFC 1.63 mg QE/g DM and EDA 42.86%. The UAE process shows its potential to the extraction of bioactive and antioxidant compounds from rice bran in a short extraction time and low temperature. Also, it is proposed that rice bran could be considered as food additives and cosmeceutical products.