DOI QR코드

DOI QR Code

Comparison of Conventional Solvent Extraction, Microwave-Assisted Extraction, and Ultrasound-Assisted Extraction Methods for Paclitaxel Recovery from Biomass

바이오매스로부터 파클리탁셀 회수를 위한 전통적 용매 추출, 마이크로웨이브를 이용한 추출, 초음파를 이용한 추출 방법 비교

  • Kim, Jin-Hyun (Department of Chemical Engineering, Kongju National University)
  • 김진현 (공주대학교 화학공학부)
  • Received : 2020.01.12
  • Accepted : 2020.02.01
  • Published : 2020.05.01

Abstract

In this study, conventional solvent extraction (CSE), microwave-assisted extraction (MAE), and ultrasound-assisted extraction (UAE) were compared for the recovery of paclitaxel from biomass. As a result of investigating the effect of the extraction solvent type (acetone, chloroform, ethanol, methanol, methylene chloride), methanol was the most suitable for all extraction methods. In the case of MAE and UAE using methanol, most of the paclitaxel (> 95%) was recovered by only one extraction. The recovery rate of paclitaxel increased with the increase of extraction temperature (25-45 ℃), microwave power (50-150 W), and ultrasonic power (180-380 W) for MAE and UAE. In addition, SEM analysis showed that the biomass surface structure was slightly corrugated in CSE, while in the MAE and UAE, it was very rough and destroyed by strong impact.

본 연구에서는 바이오매스로부터 파클리탁셀 회수를 위한 전통적 용매 추출(conventional solvent extraction, CSE), 마이크로웨이브를 이용한 추출(microwave-assisted extraction, MAE), 초음파를 이용한 추출(ultrasound-assisted extraction, UAE) 방법을 비교하였다. 추출 용매 종류(아세톤, 클로로포름, 에탄올, 메탄올, 메틸렌 클로라이드)에 따른 영향을 조사한 결과, 메탄올이 모든 추출 방법에서 가장 적합하였다. 메탄올을 이용한 MAE와 UAE의 경우, 단 1회의 추출로 대부분의 파클리탁셀 회수(>95%)가 가능하였다. 또한 MAE와 UAE의 경우 추출 온도(25-45 ℃), 마이크로웨이브 파워(50-150 W), 초음파 파워(180-380 W)의 증가에 따라 파클리탁셀 회수율이 증가하였다. 또한 SEM 분석을 통해 바이오매스 표면을 조사한 결과, 표면 구조가 CSE의 경우에는 조금 주름진 형태를 보인 반면 MAE와 UAE의 경우에는 강한 충격으로 매우 거칠고 파괴된 형태를 보였다.

Keywords

References

  1. Kim, J. H., "Paclitaxel: Recovery and Purification in Commercialization Step," Korean J. Biotechnol. Bioeng., 21, 1-10(2006).
  2. Lee, S. H. and Kim, J. H., "Kinetic and Thermodynamic Characteristics of Microwave-assisted Extraction for the Recovery of Paclitaxel from Taxus chinensis," Process Biochem., 76, 187-193(2019). https://doi.org/10.1016/j.procbio.2018.11.010
  3. Kang, H. J. and Kim, J. H., "Adsorption Kinetics, Mechanism, Isotherm, and Thermodynamic Analysis of Paclitaxel from Extracts of Taxus chinensis Cell Cultures onto Sylopute," Biotechnol. Bioproc. Eng., 24, 513-521(2019). https://doi.org/10.1007/s12257-019-0001-1
  4. Pyo, S. H., Choi, H. J. and Han, B. H., "Large-scale Purification of 13-dehydroxybaccatin III and 10-deacetylpaclitaxel, Semi-synthetic Precursors of Paclitaxel from Cell Cultures of Taxus Chinensis," J. Chromatogr., 1123, 15-21(2006). https://doi.org/10.1016/j.chroma.2006.04.093
  5. Lee, C. G. and Kim, J. H., "A Kinetic and Thermodynamic Study of Fractional Precipitation of Paclitaxel from Taxus chinensis," Process Biochem., 59, 216-222(2017). https://doi.org/10.1016/j.procbio.2017.05.016
  6. Kim, Y. S. and Kim, J. H., "Isotherm, Kinetic and Thermodynamic Studies on the Adsorption of Paclitaxel Onto Sylopute," J. Chem. Thermodyn., 130, 104-113(2019). https://doi.org/10.1016/j.jct.2018.10.005
  7. Kim, J. H., Lim, C. B., Kang, I. S., Hong, S. S. and Lee, H. S., "The Use of a Decanter for Harvesting Biomass from Plant Cell Cultures," Korean J. Biotechnol. Bioeng., 15, 337-341(2000).
  8. Yoo, K. W. and Kim, J. H., "Kinetics and Mechanism of Ultrasound-assisted Extraction of Paclitaxel from Taxus chinensis," Biotechnol. Bioproc. Eng., 23, 532-540(2018). https://doi.org/10.1007/s12257-018-0190-z
  9. Kim, G. J. and Kim, J. H., "A Simultaneous Microwave-assisted Extraction and Adsorbent Treatment Process Under Acidic Conditions for Recovery and Separation of Paclitaxel from Plant Cell," Korean J. Chem. Eng., 32, 1023-1028(2015). https://doi.org/10.1007/s11814-015-0075-1
  10. Pyo, S. H., Song, B. K., Ju, C. H., Han, B. H. and Choi, H. J., "Effects of Absorbent Treatment on the Purification of Paclitaxel from Cell Cultures of Taxus chinensis and Yew Tree," Process Biochem., 40, 1113-1117(2005). https://doi.org/10.1016/j.procbio.2004.03.004
  11. Kim, J. H., Kang, I. S., Choi, H. K., Hong, S. S. and Lee, H. S., "A Novel Prepurification for Paclitaxel from Plant Cell Cultures," Process Biochem., 37, 679-682(2002). https://doi.org/10.1016/S0032-9592(01)00247-3
  12. Ha, G. S. and Kim, J. H., "Kinetic and Thermodynamic Characteristics of Ultrasound-assisted Extraction for Recovery of Paclitaxel from Biomass," Process Biochem., 51, 1664-1673(2016). https://doi.org/10.1016/j.procbio.2016.08.012
  13. Lee, J. H. and Kim, J. H., "Development and Optimization of a Novel Simultaneous Microwave-assisted Extraction and Adsor-Bent Treatment Process for Separation and Recovery of Paclitaxel From Plant Cell Cultures," Sep. Purif. Technol., 80, 240-245(2011). https://doi.org/10.1016/j.seppur.2011.05.001
  14. Hyun, J. E. and Kim, J. H., "Microwave-assisted Extraction of Paclitaxel from Plant Cell Cultures," Korean J. Biotechnol. Bioeng., 23, 281-284(2008).
  15. Gao, M., Wang, H., Ma, M., Zhang, Y., Yin, X., Dahlgren, R. A., Du, D. and Wang, X., "Optimization of a Phase Separation Based Magnetic-stirring Salt-induced Liquid-liquid Microextraction Method for Determination of Fluoroquinolones in Food," Food Chem., 175, 181-188(2015). https://doi.org/10.1016/j.foodchem.2014.11.132
  16. Ruen-ngam, D., Shotipruk, A. and Pavasant, P., "Comparison of Extraction Methods for Recovery of Astaxanthin from Haematococcus pluvialis," Sep. Sci. Technol., 46, 64-70(2011).
  17. Salarbashia, D., Fazly Bazzazb, B. S., Karimkhani, M. M., Sabeti Noghabi, Z., Khanzadeh, F. and Sahebkar, A., "Oil Stability Index and Biological Activities of Achillea biebersteinii and Achillea wilhelmsii Extracts as Influenced by Various Ultrasound Intensities," Ind. Crop. Prod., 55, 163-172(2014). https://doi.org/10.1016/j.indcrop.2014.01.044
  18. Chunying, L., Zhicheng, L., Chunjian, Z., Lei, Y., Yujie, F., Kunming, S., Xin, H., Zhao, L. and Yuangang, Z., "Ionic-liquid-based ultrasound/microwave-assisted extraction of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one and 6-methoxy-benzoxazolin-2-one from maize (Zea mays L.) Seedlings," J. Sep. Sci., 38, 291-300(2015). https://doi.org/10.1002/jssc.201401081
  19. Pongmalai, P., Devahastin, S., Chiewchan, N. and Soponronnarit, S., "Enhancement of Microwave-assisted Extraction of Bioactive Compounds from Cabbage Outer Leaves via the Application of Ultrasonic Pretreatment," Sep. Purif. Technol., 144, 37-45(2015). https://doi.org/10.1016/j.seppur.2015.02.010
  20. Soria, A. C. and Villamiel, M., "Effect of Ultrasound on the Technological Properties and Bioactivity of Food: a Review," Trends Food Sci. Technol., 21, 323-331(2010). https://doi.org/10.1016/j.tifs.2010.04.003
  21. Mandal, V., Mohan, Y. and Hemalatha, S., "Microwave Assisted Extraction-An Innovative and Promising Extraction Tool for Medicinal Research," Phcog. Rev., 1, 7-18(2007).
  22. Gamborg, O. L., Miller, R. A. and Ojima, K., "Nutrient Requirements of Suspension Cultures of Soybean Root Cells," Exp. Cell Res., 50, 151-158(1968). https://doi.org/10.1016/0014-4827(68)90403-5
  23. Kim, T. W. and Kim, J. H., "Kinetics and Thermodynamics of Paclitaxel Extraction from Plant Cell Culture," Korean J. Chem. Eng., 33, 3175-3183(2016). https://doi.org/10.1007/s11814-016-0187-2
  24. Lee, J. H. and Kim, J. H., "Effect of Water Content of Organic Solvent on Microwave-assisted Extraction Efficiency of Paclitaxel from Plant Cell Culture," Korean J. Chem. Eng., 28, 1561-1565(2011). https://doi.org/10.1007/s11814-011-0012-x
  25. Kim, J. H. and Hong, S. S., "Optimization of Extraction Process for Mass Production of Paclitaxel from Plant Cell Cultures," Korean J. Biotechnol. Bioeng., 15, 346-351(2000).
  26. Pyo, S. H., Park, H. B., Song, B. K., Han, B. H. and Kim, J. H., "A Large-scale Purification of Paclitaxel from Cell Cultures of Taxus chinensis," Process Biochem., 39, 1985-1991(2004). https://doi.org/10.1016/j.procbio.2003.09.028
  27. Saxena, D. K., Sharma, S. K. and Sambi, S. S., "Kinetics and Thermodynamics of Gossypol Extraction from Defatted Cottonseed Meal by Ethanol," Pol. J. Chem. Technol., 14, 29-34(2012).
  28. Rakotondramasy-Rabesiaka, L., Havet, J. L., Porte, C. and Fauduet, H., "Solid-liquid Extraction Protopine from Fumaria officinalis L.-Analysis Determination, Kinetic Reaction and Model Building," Sep. Purif. Technol., 54, 253-261(2007). https://doi.org/10.1016/j.seppur.2006.09.015
  29. Ho, Y. S., Harouna-Oumarou, H. A., Fauduet, H. and Porte, C., "Kinetics and Model Building of Leaching of Water-soluble Compounds of Tilia Sapwood," Sep. Purif. Technol., 45, 169-173(2005). https://doi.org/10.1016/j.seppur.2005.03.007
  30. Meziane, S. and Kadi, H., "Kinetics and Thermodynamics of Oil Extraction from Olive Cake," J. Am. Oil Chem. Soc., 85, 391-396 (2008). https://doi.org/10.1007/s11746-008-1205-2
  31. d'Alessandro, L. G., Kriaa, K., Nikov, I. and Dimitrov, K., "Ultrasound Assisted Extraction of Polyphenols from Black Chokeberry," Sep. Purif. Technol., 93, 42-47(2012). https://doi.org/10.1016/j.seppur.2012.03.024
  32. Kim, W. K., Chae, H. J. and Kim, J. H., "Microwave-assisted Extraction of Homoharringtonine from Cephalotaxus koreana," Biotechnol. Bioproc. Eng., 15, 481-487(2010). https://doi.org/10.1007/s12257-010-0053-8

Cited by

  1. Development of Drying Process for Removal of Residual Moisture from Biomass Pretreated with Ethanol and Its Kinetic and Thermodynamic Analysis vol.26, pp.5, 2021, https://doi.org/10.1007/s12257-021-0193-z