• Title/Summary/Keyword: surface curvature

Search Result 629, Processing Time 0.028 seconds

Hybrid finite element model for wave transformation analysis (파랑 변형 해석을 위한 복합 유한요소 모형)

  • Jung Tae Hwa;Park Woo Sun;Suh Kyung Duck
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.209-212
    • /
    • 2002
  • Since Berkhoff proposed the mild-slope equation in 1972, it has widely been used for calculation of shallow water wave transformation. Recently, it was extended to give an extended mild-slope equation, which includes the bottom slope squared term and bottom curvature term so as to be capable of modeling wave transformation on rapidly varying topography. These equations were derived by integrating the Laplace equation vertically. In the present study, we develop a finite element model to solve the Laplace equation directly while keeping the same computational efficiency as the mild-slope equation. This model assumes the vertical variation of wave potential as a cosine hyperbolic function as done in the derivation of the mild-slope equation, and the Galerkin method is used to discretize . The computational domain was discretized with proper finite elements, while the radiation condition at infinity was treated by introducing the concept of an infinite element. The upper boundary condition can be either free surface or a solid structure. The applicability of the developed model was verified through example analyses of two-dimensional wave reflection and transmission. .

  • PDF

3D Tunnel Modeling by Parametric Representation of Geometry (매개변수식 기하 표현법에 의한 3차원 터널 모델링)

  • 이형우;신대석
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.1
    • /
    • pp.33-42
    • /
    • 2002
  • A method of automatic 3D tunnel modeling is proposed. The proposed method used the parametric representation of geometry and a hierarchical and relational data structure. These two bases provide the generalization and extension for 3D tunnel modeling. Especially, these two fundamentals ion the basis iota representing the characteristics of the tunnel structure for analysis. The constant-curvature characteristic is exploited to generate 3D mesh on the tunnel surface. This is attributed to the advantage that any 2D automatic mesh generation algorithm can be applied to 3D mesh modeling.

Investigation on the Turbulence Structure of Reattaching Separated Shear Layer Past a Two-Dimensional Vetrical Fenc(I) (2次元 垂直壁을 지니는 再附着 剝離 斷層 의 亂流構造 에 관한 硏究 (I))

  • 김경천;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.4
    • /
    • pp.403-413
    • /
    • 1985
  • Hot-wire measurements of second and third-order mean products of velocity fluctuations have been made in the separated, reattached, and redeveloping boundary layer behind a vertical fence. Mean velocity, wall static pressure distributions have also been measured in the whole flow field. Upstream of the reattachment point, the separated shear layer developes as a free mixing layer, but the gradient of the maximum slope thickness, turbulent intensities and the Reynolds shear stress are higher than that of the mixing layer due to initial streamline curvature and the effects of highly turbulent recirculating flow region. In the reattachment region, Reynolds shear stress and triple products near the surface is far more rapid than the decrease of the shear stress; that is the presence of the solid wall has a marked effect on the apparent gradient diffusivity of intensity or shear stress and throws doubts upon the usefulness of the simple gradient diffusivity model in this region.

A study on the elastic-plastic analysis and fracture behavior of pressure vessel (내외압을 받는 압력용기의 탄소성 해석과 파괴거동에 대한 고찰)

  • 엄동석
    • Journal of Welding and Joining
    • /
    • v.6 no.2
    • /
    • pp.19-29
    • /
    • 1988
  • This paper reports on the elatic-plastic analysis and fracture behavior of cylinder with outer surface crack which is under external or internal pressure. For the studuty of crack length effects in cylinder, ratios of crack lengths to finite thickness (a/t) are dertermined 0.3, 0.4, 0.5. For the study of curvature effects in cylinders, ratios of mean diameter to finite thicknees (Rm/t) are determined 10.0, 15.0, 20.0. Analysis is conduceted using the theory of fracture mechanics and two dimensional finite element solution assuming the axi-symmetrical plane strain conditon. Main results of this study are as follows. 1) It is known from this paper that elastic-plastic strain is initiated near crack tip and enlarged between crack tip and inner side of cylinder. 2) $K_{1}$ of cylinder under external or internal pressure is evaluated memebrane stress .root..pi.* crack length. The results of this study are inclined to Lomacky's results and Kobayshi's result. 3) Distribution of stress near crack tip is looked higher than of other zone, as crack length of equal model is longer, and as diameter of cylinder is longer. 4) When other conditions are equal, displacemenet near crack tip is looked duller, as length is longer.

  • PDF

Seismic Performance Evaluation of Cone-type Friction Pendulum Bearing System Using Shaking Table Test (진동대실험을 통한 원추형 마찰진자베어링의 내진성능 평가)

  • Jeon, Bub-Gyu;Chang, Sung-Jin;Kim, Nam-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.389-394
    • /
    • 2011
  • Existing FPS(Friction Pendulum System) is isolation system which is possible to isolate structures by pendulum characteristic from ground vibration. Structural natural frequency could be decided by designing the radius of curvature of FPS. Thus, response vibration could be reduced by changing natural frequency of structures from FPS. But effective periods of recorded seismic wave were various and estimation of earthquake characteristic could be difficult. If effective periods of seismic wave correspond to natural frequency of structures with FPS, resonance can be occurred. Therefore, CFPBS(Cone-type Friction Pendulum Bearing System) was developed for controlling the response acceleration and displacement by the slope of friction surfaces. Structural natural frequency with CFPBS can be changed according to position of ball on the friction surface which was designed cone-type. Therefore, Divergence of response could be controlled by CFPBS which had constantly changing natural frequency with low modal participation factor in wide-range. In this study, Seismic performance of CFPBS was evaluated by numerical analysis and shaking table test.

  • PDF

Tactile Response Characteristics of Haptic Displays based on Magneto-Rheological Fluids (MR 유체를 이용한 햅틱 디스플레이의 질감 반응 특성)

  • Jang, Min-Gyu;Choi, Jea-Young;Lee, Chul-Hee
    • Tribology and Lubricants
    • /
    • v.26 no.3
    • /
    • pp.184-189
    • /
    • 2010
  • In this paper, tactile response characteristics in medical haptic interface are investigated to characterize the feeling of contact between the finger skin and the organic tissue when a finger is dragged over tissue. In order to represent the tactile feeling, a prototype tactile display incorporating Magneto-Rheological (MR) fluid has been developed. Tactile display devices simulate the finger's skin to feel the sensations of contact such as compliance, curvature and friction. Thus, the tactile display provides the surface information of organic tissue to the surgeon using different actuating mechanisms ranging from the conventional mechanical motor to the smart material actuators. In order to investigate the compliance feeling of human finger's touch, vertical force responses of the tactile display under the various magnetic fields have been assessed. Also, frictional resistive force responses of the tactile display are investigated to simulate the action of finger's dragging. From the results, different tactile feelings are observed as the applied magnetic field is varied and arrayed magnetic poles combinations. This research gives a smart technology of tactile displaying.

Fabrication of Lenticular Lens by Continuous UV Roll Imprinting (UV Roll 임프린팅 공정을 이용한 렌티큘러 렌즈 제작)

  • Myung H.;Cha J.;Kim S.;Kang S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.91-94
    • /
    • 2005
  • With increasing demands for large-scale micro-optical components in the field of digital display, the establishment of large-scale fabrication technology fur polymeric patterns has become a priority. The starting point of any polymer replication process is the mold, and the mold often has flat surface. However, It is very hard to replicate large-scale micro patterns using the flat mold, because the cost of large-scale flat mold was very high, and some uniformity and releasing problems were often occurred in large scale flat molding process. In this study, a UV roll imprinting system to overcome the financial and fabrication issues of large-scale pattern replication process was designed and constructed. As a practical example of the system, a lenticular lens with radius of curvature of $223{\mu}m$ and pitch of $280{\mu}m$, which was used to provide wide viewing angle in projection TV, was designed and fabricated. The roll stamper was fabricated using direct machining process of aluminum roll base. Finally, the shape accuracy and uniformity of roll imprinted lenticular lens sheet were measured and analyzed.

  • PDF

Development of Door Outer Panel using High Strength Steel Sheet for Improving Dent Resistance (내덴트성 향상을 위한 고강도 도어 외판 개발)

  • Kim, I.S.;Kim, T.J.;Jung, Y.I.;Yoon, C.S.;Lim, J.D.
    • Transactions of Materials Processing
    • /
    • v.16 no.4 s.94
    • /
    • pp.254-259
    • /
    • 2007
  • Dent resistance is an important characteristic to avoid damage on automotive outer panels. From a practical point of view, dents can be caused in a number of ways. Considering doors as an example, denting can occur from stone impacts or from the careless opening of an adjacently parked vehicle door. Denting can occur where the door surface is smooth and may not have sufficient curvature to resist dent. These exterior body parts are designed to improve dent resistance using a combination of work hardening and bake hardening. In brief, dent is affected by the shape of the parts and the material properties such as yield strength, strain and thickness. In this work, forming of door outer panel is investigated by Taguchi method. Main parameters are yield strength, thickness, blank size, blank holding force and so on. For the given value of design parameters, forming analysis of the eighteen cases are carried out according to L18 orthogonal array. After comparing the performance by simple conversion of simulation results into dent resistance, the final suggestion of the forming parameters is verified for the optimal improvement of dent resistance.

Application of a Composite Skin Equivalent using Collagen and Acellular Dermal Matrix as the Scaffold in a Mouse Model of Full-thickness Wound (콜라겐과 무세포진피를 이용한 혼합형 인공피부 개발 및 쥐 모델에서 창상치료 적용)

  • Lee, Dong Hyuck;Youn, Jin Chul;Lee, Jung Hee;Kim, In Seop
    • KSBB Journal
    • /
    • v.29 no.1
    • /
    • pp.42-49
    • /
    • 2014
  • The aim of this study was to develop a composite human skin equivalent for wound healing. Collagen type1 and acellular dermal matrix powder were utilized as the scaffold with dermal fibroblasts and keratinocytes for the development of a composite human skin equivalent. Fibroblast maintained the volume of composite skin equivalent and also induced keratinocytes to attach and proliferate on the surface of composite skin equivalent. The composite human skin equivalent had a structure and curvature similar to those of real skin. Balb-C nu/nu mice were used for the evaluation of full-thickness wound healing effect of the composite human skin equivalent. Graft of composite skin equivalent on full-thickness wound promoted re-epithelialization and granulation tissue formation at 9 days. Given the average wound-healing time (14 days), the wound in the developed composite skin equivalent healed quickly. The overall results indicated that this three-dimensional composite human skin equivalent can be used to effectively enhance wound healing.

Strengthening of Substrate Glass for LCD by Single ton Exchange Process (Single Ion Exchange Process에 의한 LCD용 기판유리의 강화)

  • 이회관;오영석;이용수;강원호
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.7
    • /
    • pp.675-679
    • /
    • 2002
  • To produce a strengthened glass, single ion exchange properties such as three-point bend strength and residual stress were investigated in soda-lime-silicate substrate glass for display use. The present work showed that the maximum value of strength was 62.5${\times}$10$\sub$6/ kg/㎡ after, the two-step single ion exchange process at 470$^{\circ}C$ for 1 h and 450$^{\circ}C$ for 24 h. As the result of the fracture analysis after bending test, the residual stress on the fractured surface of the strengthened glass increased the flexibility by means of absorbing the elastic deformation energy in the glass. Also, the effects of absorbing the elastic deformation energy were analysed by curvature change, number of multiple crack branches and brittleness.