DOI QR코드

DOI QR Code

Application of a Composite Skin Equivalent using Collagen and Acellular Dermal Matrix as the Scaffold in a Mouse Model of Full-thickness Wound

콜라겐과 무세포진피를 이용한 혼합형 인공피부 개발 및 쥐 모델에서 창상치료 적용

  • Lee, Dong Hyuck (Department of Biological Sciences and Biotechnology, Hannam University) ;
  • Youn, Jin Chul (Department of Biological Sciences and Biotechnology, Hannam University) ;
  • Lee, Jung Hee (Department of Biological Sciences and Biotechnology, Hannam University) ;
  • Kim, In Seop (Department of Biological Sciences and Biotechnology, Hannam University)
  • 이동혁 (한남대학교 생명.나노과학대학 생명시스템과학과) ;
  • 윤진철 (한남대학교 생명.나노과학대학 생명시스템과학과) ;
  • 이정희 (한남대학교 생명.나노과학대학 생명시스템과학과) ;
  • 김인섭 (한남대학교 생명.나노과학대학 생명시스템과학과)
  • Received : 2013.12.12
  • Accepted : 2014.01.16
  • Published : 2014.02.27

Abstract

The aim of this study was to develop a composite human skin equivalent for wound healing. Collagen type1 and acellular dermal matrix powder were utilized as the scaffold with dermal fibroblasts and keratinocytes for the development of a composite human skin equivalent. Fibroblast maintained the volume of composite skin equivalent and also induced keratinocytes to attach and proliferate on the surface of composite skin equivalent. The composite human skin equivalent had a structure and curvature similar to those of real skin. Balb-C nu/nu mice were used for the evaluation of full-thickness wound healing effect of the composite human skin equivalent. Graft of composite skin equivalent on full-thickness wound promoted re-epithelialization and granulation tissue formation at 9 days. Given the average wound-healing time (14 days), the wound in the developed composite skin equivalent healed quickly. The overall results indicated that this three-dimensional composite human skin equivalent can be used to effectively enhance wound healing.

Keywords

References

  1. Darlenski, R., J. Kazandjieva, and N. Tsankov (2011) Skin barrier function: morphological basis and regulatory mechanisms. J. Clin. Med. 4: 36-45.
  2. Denda, M. (2000) Skin barrier function as a self-organizing system. Forma 15: 227-232.
  3. Han, S. K. and H. J. You (2011) Wound coverage using advanced technology in Korea. J Kor. Med. Assoc. 54: 594-603. https://doi.org/10.5124/jkma.2011.54.6.594
  4. Tanner, J. C., J. Vandeput, and J. F. Olley (1964) The mesh skin graft. Plast. Reconstr. Surg. 34: 287-291. https://doi.org/10.1097/00006534-196409000-00011
  5. Rheinwald, J. G. and H. Green (1975) Serial cultivation of strains of human epidermal keratinocytes: The formation of keratinizing colonies from single cells. Cell 6: 331-344. https://doi.org/10.1016/S0092-8674(75)80001-8
  6. Mahmood, K., M. Gill, and A. M. Baber (2003) Role of split thickness skin grafting in various surgical conditions. Pak. J. Surg. 19: 30-33.
  7. Kim C. H., H. S. Park, and Y. Son (2002) The status and prospect of bioartificial skin. Polym. Sci. Tech. 13: 48-55.
  8. Chen, R. N., H. O. Ho, Y. T. Tsai, and M. T. Sheu (2004) Process development of an acellular dermal matrix (ADM) for biomedical applications. Biomaterials 25: 2679-2686. https://doi.org/10.1016/j.biomaterials.2003.09.070
  9. Lee, K. C., N. H. Lee, J. H. Ban, and S. M. Jin (2008) Surgical treatment using an allograft dermal matrix for nasal septal perforation. Yonsei Med. J. 49: 244-248. https://doi.org/10.3349/ymj.2008.49.2.244
  10. Lineen, E. and N. Namias (2008) Biologic dressing in burns. J. Craniofac. Surg. 19: 923-928. https://doi.org/10.1097/SCS.0b013e318175b5ab
  11. Sclafani, A. P., T. Romo 3rd, A. A. Jacono, S. McCormick, R. Cocker, and A. Parker (2000) Evaluation of acellular dermal graft in sheet (AlloDerm) and injectable (micronized AlloDerm) forms for soft tissue augmentation. Clinical observations and histological analysis. Arch. Facial Plast. Surg. 2: 130-136. https://doi.org/10.1001/archfaci.2.2.130
  12. Ge, P. S., T. A. Imai, A. Aboulian, and T. L. Van Natta (2010) The use of human acellular dermal matrix for chest wall reconstruction. Ann. Thorac. Surg. 90: 1799-1804. https://doi.org/10.1016/j.athoracsur.2010.07.080
  13. Shoulders, M. D. and R. T. Raines (2009) Collagen structure and stability. Annu. Rev. Biochem. 78: 929-958. https://doi.org/10.1146/annurev.biochem.77.032207.120833
  14. Albini, A. and B. C. Adelmann-Grill (1985) Collagenolytic cleavage products of collagen type I as chemoattractants for human dermal fibroblasts. Eur. J. Cell Biol. 36: 104-107.
  15. Li, S. T. (2003) Biologic biomaterials: Tissue-derived biomaterials (Collagen). pp. 117-139 In: J. B. Park and J. D. Bronzino (eds.). Biomaterials: Principles and applications. CRC Press, Boca Raton, FL, USA.
  16. Metcalfe, A. D. and M. W. J. Ferguson (2007) Bioengineering skin using mechanisms of regeneration and repair. Biomaterials 28: 5100-5113. https://doi.org/10.1016/j.biomaterials.2007.07.031
  17. Shin, H., S. Jo, and A. G. Mikos (2003) Biomimetic materials for tissue engineering. Biomaterials 24: 4353-4364. https://doi.org/10.1016/S0142-9612(03)00339-9
  18. Liang, C. C., A. Y. Park, and J. L. Guan (2007) In vitro scratch assay: A convenient and inexpensive method for analysis of cell migration in vitro. Nat. Protoc. 2: 329-333. https://doi.org/10.1038/nprot.2007.30
  19. Tzoneva, R., N. Faucheux, and T. Groth (2007) Wettability of substrata controls cell-substrate and cell-cell adhesions. Biochim. Biophys. Acta. 1770: 1538-1547. https://doi.org/10.1016/j.bbagen.2007.07.008
  20. Diegelmann, R. F. and M. C. Evans (2004) Wound healing: An overview of acute, fibrotic and delayed healing. Front Biosci. 9: 283-289. https://doi.org/10.2741/1184
  21. Tomasek, J. J., G. Gabbiani, B. Hinz, C. Chaponnier, and R. A. Brown (2002) Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat. Rev. Mol. Cell Biol. 3: 349-463. https://doi.org/10.1038/nrm809
  22. Coulomb, B., C. Lebreton, and L. Dubertret (1989) Influence of human dermal fibroblasts on epidermalization. J. Invest. Dermatol. 92: 122-125. https://doi.org/10.1111/1523-1747.ep13071335
  23. Barreca, A., M. De Luca, P. Del Monte, S. Bondanza, G. Damonte, G. Cariola, E. Di Marco, G. Giordano, R. Cancedda, and F. Minuto (1992) In vitro paracrine regulation of human keratinocyte growth by fibroblast-derived insulin-like growth factors. J. Cell Physiol. 151: 262-268. https://doi.org/10.1002/jcp.1041510207
  24. Okamoto, E. and Y. Kitano (1993) Expression of basement membrane components in skin equivalents: Influence of dermal fibroblasts. J. Dermatol. Sci. 5: 81-88. https://doi.org/10.1016/0923-1811(93)90074-Y