Browse > Article
http://dx.doi.org/10.7841/ksbbj.2014.29.1.42

Application of a Composite Skin Equivalent using Collagen and Acellular Dermal Matrix as the Scaffold in a Mouse Model of Full-thickness Wound  

Lee, Dong Hyuck (Department of Biological Sciences and Biotechnology, Hannam University)
Youn, Jin Chul (Department of Biological Sciences and Biotechnology, Hannam University)
Lee, Jung Hee (Department of Biological Sciences and Biotechnology, Hannam University)
Kim, In Seop (Department of Biological Sciences and Biotechnology, Hannam University)
Publication Information
KSBB Journal / v.29, no.1, 2014 , pp. 42-49 More about this Journal
Abstract
The aim of this study was to develop a composite human skin equivalent for wound healing. Collagen type1 and acellular dermal matrix powder were utilized as the scaffold with dermal fibroblasts and keratinocytes for the development of a composite human skin equivalent. Fibroblast maintained the volume of composite skin equivalent and also induced keratinocytes to attach and proliferate on the surface of composite skin equivalent. The composite human skin equivalent had a structure and curvature similar to those of real skin. Balb-C nu/nu mice were used for the evaluation of full-thickness wound healing effect of the composite human skin equivalent. Graft of composite skin equivalent on full-thickness wound promoted re-epithelialization and granulation tissue formation at 9 days. Given the average wound-healing time (14 days), the wound in the developed composite skin equivalent healed quickly. The overall results indicated that this three-dimensional composite human skin equivalent can be used to effectively enhance wound healing.
Keywords
Acellular dermal matrix; Collagen; Composite human skin equivalent; Fibroblast; Keratinocyte; Wound healing;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Tanner, J. C., J. Vandeput, and J. F. Olley (1964) The mesh skin graft. Plast. Reconstr. Surg. 34: 287-291.   DOI
2 Darlenski, R., J. Kazandjieva, and N. Tsankov (2011) Skin barrier function: morphological basis and regulatory mechanisms. J. Clin. Med. 4: 36-45.
3 Denda, M. (2000) Skin barrier function as a self-organizing system. Forma 15: 227-232.
4 Han, S. K. and H. J. You (2011) Wound coverage using advanced technology in Korea. J Kor. Med. Assoc. 54: 594-603.   DOI   ScienceOn
5 Rheinwald, J. G. and H. Green (1975) Serial cultivation of strains of human epidermal keratinocytes: The formation of keratinizing colonies from single cells. Cell 6: 331-344.   DOI   ScienceOn
6 Mahmood, K., M. Gill, and A. M. Baber (2003) Role of split thickness skin grafting in various surgical conditions. Pak. J. Surg. 19: 30-33.
7 Kim C. H., H. S. Park, and Y. Son (2002) The status and prospect of bioartificial skin. Polym. Sci. Tech. 13: 48-55.
8 Chen, R. N., H. O. Ho, Y. T. Tsai, and M. T. Sheu (2004) Process development of an acellular dermal matrix (ADM) for biomedical applications. Biomaterials 25: 2679-2686.   DOI   ScienceOn
9 Lee, K. C., N. H. Lee, J. H. Ban, and S. M. Jin (2008) Surgical treatment using an allograft dermal matrix for nasal septal perforation. Yonsei Med. J. 49: 244-248.   DOI   ScienceOn
10 Lineen, E. and N. Namias (2008) Biologic dressing in burns. J. Craniofac. Surg. 19: 923-928.   DOI   ScienceOn
11 Sclafani, A. P., T. Romo 3rd, A. A. Jacono, S. McCormick, R. Cocker, and A. Parker (2000) Evaluation of acellular dermal graft in sheet (AlloDerm) and injectable (micronized AlloDerm) forms for soft tissue augmentation. Clinical observations and histological analysis. Arch. Facial Plast. Surg. 2: 130-136.   DOI
12 Li, S. T. (2003) Biologic biomaterials: Tissue-derived biomaterials (Collagen). pp. 117-139 In: J. B. Park and J. D. Bronzino (eds.). Biomaterials: Principles and applications. CRC Press, Boca Raton, FL, USA.
13 Ge, P. S., T. A. Imai, A. Aboulian, and T. L. Van Natta (2010) The use of human acellular dermal matrix for chest wall reconstruction. Ann. Thorac. Surg. 90: 1799-1804.   DOI
14 Shoulders, M. D. and R. T. Raines (2009) Collagen structure and stability. Annu. Rev. Biochem. 78: 929-958.   DOI   ScienceOn
15 Metcalfe, A. D. and M. W. J. Ferguson (2007) Bioengineering skin using mechanisms of regeneration and repair. Biomaterials 28: 5100-5113.   DOI   ScienceOn
16 Shin, H., S. Jo, and A. G. Mikos (2003) Biomimetic materials for tissue engineering. Biomaterials 24: 4353-4364.   DOI   ScienceOn
17 Liang, C. C., A. Y. Park, and J. L. Guan (2007) In vitro scratch assay: A convenient and inexpensive method for analysis of cell migration in vitro. Nat. Protoc. 2: 329-333.   DOI   ScienceOn
18 Tzoneva, R., N. Faucheux, and T. Groth (2007) Wettability of substrata controls cell-substrate and cell-cell adhesions. Biochim. Biophys. Acta. 1770: 1538-1547.   DOI
19 Diegelmann, R. F. and M. C. Evans (2004) Wound healing: An overview of acute, fibrotic and delayed healing. Front Biosci. 9: 283-289.   DOI
20 Tomasek, J. J., G. Gabbiani, B. Hinz, C. Chaponnier, and R. A. Brown (2002) Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat. Rev. Mol. Cell Biol. 3: 349-463.   DOI   ScienceOn
21 Coulomb, B., C. Lebreton, and L. Dubertret (1989) Influence of human dermal fibroblasts on epidermalization. J. Invest. Dermatol. 92: 122-125.   DOI   ScienceOn
22 Barreca, A., M. De Luca, P. Del Monte, S. Bondanza, G. Damonte, G. Cariola, E. Di Marco, G. Giordano, R. Cancedda, and F. Minuto (1992) In vitro paracrine regulation of human keratinocyte growth by fibroblast-derived insulin-like growth factors. J. Cell Physiol. 151: 262-268.   DOI
23 Okamoto, E. and Y. Kitano (1993) Expression of basement membrane components in skin equivalents: Influence of dermal fibroblasts. J. Dermatol. Sci. 5: 81-88.   DOI   ScienceOn
24 Albini, A. and B. C. Adelmann-Grill (1985) Collagenolytic cleavage products of collagen type I as chemoattractants for human dermal fibroblasts. Eur. J. Cell Biol. 36: 104-107.