• 제목/요약/키워드: surface confinement

검색결과 105건 처리시간 0.024초

Thermal conductivity of individual single-crystalline Bi nanowires grown by stress-induced recrystallization

  • Roh, Jong-Wook;Chen, Ren-Kun;Lee, Jun-Min;Ham, Jin-Hee;Lee, Seung-Hyn;Hochbaum, Allon;Hippalgaonkar, Kedar;Yang, Pei-Dong;Majumdar, Arun;Kim, Woo-Chul;Lee, Woo-Young
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 춘계학술대회 논문집
    • /
    • pp.23-23
    • /
    • 2009
  • It has been challenging to increase the thermoelectric figure of merit ($ZT=S^2{\sigma}T/\kappa$) of materials, which determine the efficiency of thermoelectric devices, because the three parameters Seebeck coefficient (S), electrical conductivity ($\sigma$), and thermal conductivity ($\kappa$) of bulk materials are inter-dependent. With the development of nanotechnology, ZT values of nanostructured materials are predicted to be enhanced by classical size effects and quantum confinement effects. In particular, Bi nanowires were suggested as one of ideal thermoelectric materials due to the expected quantum confinement effects for the simultaneous increase in Sand. In this work, we have investigated the thermal conductivity of individual single crystalline Bi nanowires with d = 98 nm and d = 327 nm in the temperature range 40 - 300 K using MEMS devices. The for the Bi nanowire with d = 98 nm was observed to be ~ 1.6 W/m-K at 300 K, which is much lower than that of Bi bulk (8 W/m-K at 300 K). This indicates that the thermal conductivity of the Bi suppressed due to enhanced surface boundary scattering in one-dimensional structures. Our results suggest that Bi nanowires grown by stress-induced method can be used for high-efficiency thermoelectric devices.

  • PDF

Wall charge effects on structural properties of a coarse-grained FENE polyelectrolyte confined in slit nanochannels by Brownian dynamics simulation

  • Jeon, Jong-Gu;Chun, Myung-Suk
    • Korea-Australia Rheology Journal
    • /
    • 제19권2호
    • /
    • pp.51-59
    • /
    • 2007
  • A polyelectrolyte chain confined in a slit nanochannel exhibits a structural transition from the one in free space. In this paper, the effect of the long-range electrostatic interactions between the xanthan polyelectrolyte and the slit wall on the confined xanthan conformation is investigated via the Brownian dynamics simulation. A neutral and two negatively charged surfaces of polydimethylsiloxane (PDMS) and glass are combined to make four kinds of slit channels with different charge characteristics: i) neutral-neutral, ii) glass-glass, iii) neutral-PDMS and iv) neutral-glass walls. Their walls are characterized by uniform surface charge densities determined from experimental data of zeta potential. Both the nonmonotonic chain size variation and the loss of long-range bond vector correlation, previously observed under confinement in the PDMS-PDMS slit, are also found in the neutral slit, demonstrating the nonelectrostatic origin of such crossover behaviors. As expected, the effect of wall charges is negligible at sufficiently high medium ionic strength of 100mM but it becomes significant in the opposite limit of 0.01mM. In the latter case, the high charge density of glass walls strengthens the effective confinement of a negatively charged polyelectrolyte and produces a xanthan structure comparable to that confined in a much narrower neutral slit. The obtained structural data suggest the possibility of controlling the structure of confined polyelectrolytes by the modification of surface charge characteristics of micro/nanofluidic devices in combination with the adjustment of the medium ionic strength.

단결정 반금속 비스무스 단일 나노선의 Shubnikov-de Haas 진동 (Shubnikov-de Haas Oscillations in an Individual Single-Crystalline Semimetal Bismuth Nanowire)

  • 김정민;함진희;심우영;이경일;전계진;정원용;이우영
    • 한국재료학회지
    • /
    • 제18권2호
    • /
    • pp.103-106
    • /
    • 2008
  • The magneto-transport properties of an individual single crystalline Bi nanowire grown by a spontaneous growth method are reported. A four-terminal device based on an individual 400-nm-diameter nanowire was successfully fabricated using a plasma etching technique that removed an oxide layer that had formed on the surface of the nanowire. Large transverse ordinary magnetoresistance (1401%) and negative longitudinal ordinary magnetoresistance (-38%) were measured at 2 K. It was observed that the period of Shubnikov-de Haas oscillations in transverse geometry was $0.074^{T-1}$, $0.16^{T-1}$ and $0.77^{T-1}$, which is in good agreement with those of bulk Bi. However, it was found that the period of SdH oscillation in longitudinal geometry is $0.24^{T-1}$, which is larger than the value of $0.16^{T-1}$ reported for bulk Bi. The deviation is attributable to the spatial confinement arising from scattering at the nanowire surface boundary.

Ultrathin-Body SOI MOSFETs에서 면방향에 따른 정공의 이동도 증가 (Hole Mobility Enhancement in (100)- and (110)-surfaces of Ultrathin-Body Silicon-on-Insulator Metal-Oxide-Semiconductors)

  • 김관수;구상모;정홍배;정종완;조원주
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.7-8
    • /
    • 2007
  • We investigated the characteristics of UTB-SOI pMOSFETs with SOI thickness ($T_{SOI}$) ranging from 10 nm to 1 nm and evaluated the dependence of electrical characteristics on the silicon surface orientation. As a result, it is found that the subthreshold characteristics of (100)-surface UTB-SOI pMOSFETs were superior to (110)-surface. However, the hole mobility of (110)-surface were larger than that of (100)-surface. The enhancement of effective hole mobility at the effective field of 0.1 MV/ccm was observed from 3-nm to 5-nm SOI thickness range.

  • PDF

고강도와 보통강도 콘크리트를 사용한 보-기둥 접합부의 구조적 거동 (The Investigation on the Behavior of Beam-Column Joint with High and Low Strength Concerte)

  • 신성우;이광수;문정일;안종문;박희민;장일영
    • 콘크리트학회지
    • /
    • 제4권1호
    • /
    • pp.119-126
    • /
    • 1992
  • R/C라멘골조에 있어서 수직부재(기둥, 벽등)에 수평부재(보, 슬라브등)의 콘크리트 강도보다 1.4배가 넘는 강도의 콘크리트를 분리타설할 경우 ACI 318-89 R10. 13. 1은 수직부재에 타설한 콘크리트가 수평부재로 2ft(60cm)이상의 내민길으를 확보하도록 규정하고 있다. 이에 따라 본 연구는 이 규정을 그대로 적용하기에 앞서 실험적인 검증을 통하여 구조적인 안전성을 확보하기 위하여 주요변수로서 콘크리트 압축강도, 전단보강비, 하중재하방법 등을 두어 총 6개의 시험체를 시험 및 분석하였다. 실험결과는 일방향 단조하중을 받는 시험체가 반복하중을 받는 시험체보다 다소 낮은 하중 수행능력을 보였다. 반복하중을 받는 시험체의 경우 접합면으로부터 5~20cm정도 떨어진 부분에 집중적인 균열이 발생하였으나 2ft(60cm)의 내민길이 면에서의 거의 균열이 발생하지 않아 현재 ACI의 내민길이 2ft(60cm)에 대한 규정은 매우 안전한 것으로 사료되며, 전단보강비가 증가함에 따라 부재의 연성능력이 증가하는 것으로 나타나 요구되는 전단보강근양의 50%이하는 부재의 거동에 다소 불리하나 50%를 초과하는 전단보강은 과다한 보강인 것으로 나타났다.

Nanospace Confinement of Conducting Polymers using Mesoporous Silica and Organosilica

  • Itahara, Hiroshi;Inagaki, Shinji;Asahi, Ryoji
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.277-277
    • /
    • 2006
  • Conducting polymers (e.g. poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylen vinylene] (MEH-PPV)) confined in one-dimensional nanoscale channels of mesoporous materials, are expected to lead the novel applications for electroconductive and optoelectronic devices. We investigated the adsorption behavior of MEH-PPV on organically surface-modified mesoporous silica (FSM-16) and mesoporous organosilica. The amount of the confined MEH-PPV was found to strongly depend on the surface modifications of the mesoporous materials. The optical absorption edge of the confined MHE-PPV was clearly blue-shifted when compared to that of a free MHE-PPV.

  • PDF

Thermo-mechanical damage of tungsten surfaces exposed to rapid transient plasma heat loads

  • Crosby, Tamer;Ghoniem, Nasr M.
    • Interaction and multiscale mechanics
    • /
    • 제4권3호
    • /
    • pp.207-217
    • /
    • 2011
  • International efforts have focused recently on the development of tungsten surfaces that can intercept energetic ionized and neutral atoms, and heat fluxes in the divertor region of magnetic fusion confinement devices. The combination of transient heating and local swelling due to implanted helium and hydrogen atoms has been experimentally shown to lead to severe surface and sub-surface damage. We present here a computational model to determine the relationship between the thermo-mechanical loading conditions, and the onset of damage and failure of tungsten surfaces. The model is based on thermo-elasticity, coupled with a grain boundary damage mode that includes contact cohesive elements for grain boundary sliding and fracture. This mechanics model is also coupled with a transient heat conduction model for temperature distributions following rapid thermal pulses. Results of the computational model are compared to experiments on tungsten bombarded with energetic helium and deuterium particle fluxes.

Fuctionalization of SBA-16 Mesoporous Materials with Cobalt(III) Cage Amine Complex

  • Han, Sang-Cheol;Sujandi, Sujandi;Park, Sang-Eon
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권9호
    • /
    • pp.1381-1384
    • /
    • 2005
  • Surface modification of tridimensional cubic mesoporous silica, SBA-16, was investigated with pendant arm functionalized cobalt diaminosarcophagine (diAMsar) cage complex which covalently grafted onto the silica surface through the silication with sylanol group. The spectroscopic results showed that the mesoporous structure was preserved under the $[Co(diAMsar)]^{3+}$ grafting reaction condition. Successful grafting prevented the cobalt diAMsar cage from leaching out from the SBA-16 support.

4각기둥의 단면형상 변형 후 CFS로 보강한 고강도 철근 콘크리트 기둥의 보강효과 및 파괴거동 연구 (Study on Strengthening Effect and Failure Behavior of CFS Strengthened High Strength RC Columns after Cross -sectional Shape Modification)

  • 전경숙;김장호;박석균;김진근
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(I)
    • /
    • pp.259-262
    • /
    • 2005
  • Numerous studies showed that safety and serviceability of many concrete infrastructures and buildings built in 1970's have capacity less than their design capacities and thereby require immediate retrofitting. Currently, these aged concrete structure are being repaired using many repair and strengthening methods developed in the past. Therefore, in this study, a repairing and strengthening method for retrofitting high strength concrete columns that can effectively improve the performance of high strength concrete columns is developed. The square high strength concrete column's cross-sectional shape is modified to octagonal shape by attaching precast members on the surface of the column. Then, the octagonal column surface is wrapped using Carbon Fiber Sheets (CFS). The method allowed the maximum usage of confinement effect of externally wrapped CFS, which resulted in improved strength and ductility of repaired high strength concrete columns.

  • PDF

A new way to design and construct a laminar box for studying structure-foundation-soil interaction

  • Qin, X.;Cheung, W.M.;Chouw, N.
    • Earthquakes and Structures
    • /
    • 제17권5호
    • /
    • pp.521-532
    • /
    • 2019
  • This paper describes the construction of a laminar box for simulating the earthquake response of soil and structures. The confinement of soil in the transverse direction does not rely on the laminar frame but is instead achieved by two acrylic glass walls. These walls allow the behaviour of soil during an earthquake to be directly observed in future study. The laminar box was used to study the response of soil with structure-footing-soil interaction (SFSI). A single degree-of-freedom (SDOF) structure and a rigid structure, both free standing on the soil, were utilised. The total mass and footing size of the SDOF and rigid structures were the same. The results show that SFSI considering the SDOF structure can affect the soil surface movements and acceleration of the soil at different depths. The acceleration developed at the footing of the SDOF structure is also different from the surface acceleration of free-field soil.