• Title/Summary/Keyword: surface approximation

Search Result 510, Processing Time 0.033 seconds

Broadband Processing of Conventional Marine Seismic Data Through Source and Receiver Deghosting in Frequency-Ray Parameter Domain (주파수-파선변수 영역에서 음원 및 수신기 고스트 제거를 통한 전통적인 해양 탄성파 자료의 광대역 자료처리)

  • Kim, Su-min;Koo, Nam-Hyung;Lee, Ho-Young
    • Geophysics and Geophysical Exploration
    • /
    • v.19 no.4
    • /
    • pp.220-227
    • /
    • 2016
  • Marine seismic data have not only primary signals from subsurface but also ghost signals reflected from the sea surface. The ghost decreases temporal resolution of seismic data because it attenuates specific frequency components. For eliminating the ghost signals effectively, the exact ghost delaytimes and reflection coefficients are required. Because of undulation of the sea surface and vertical movements of airguns and streamers, the ghost delaytime varies spatially and randomly while acquiring seismic data. The reflection coefficient is a function of frequency, incidence angle of plane-wave and the sea state. In order to estimate the proper ghost delaytimes considering these characteristics, we compared the ghost delaytimes estimated with L-1 norm, L-2 norm and kurtosis of the deghosted trace and its autocorrelation on synthetic data. L-1 norm of autocorrelation showed a minimal error and the reflection coefficient was calculated using Kirchhoff approximation equation which can handle the effect of wave height. We applied the estimated ghost delaytimes and the calculated reflection coefficients to remove the source and receiver ghost effects. By removing ghost signals, we reconstructed the frequency components attenuated near the notch frequency and produced the migrated stack section with enhanced temporal resolution.

Studies on the Red-Yellow Soils in Honam Rolling Area: The morphology, physical and chemical characteristics of the Yesan and Songjeong series (호남야산(湖南野山)에 분포(分布)하고있는 적황색토(赤黃色土)에 관(關)한 연구(硏究) - 예산통(禮山統) 및 송정통(松汀統)의 형태적(形態的) 및 이화학적(理化學的) 특성(特性)에 관(關)하여 -)

  • Chae, Sang Suk
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.6 no.1
    • /
    • pp.1-8
    • /
    • 1973
  • This study examined the morphological, physical and chemical characteristics of the Yesan and the Songjeong series derived from residuum of the granite developed on gently sloping to rolling relief in Honam reclamable land Area. The results of this study are summarized as follows. 1. The morphological characteristics. In the Yesan series, the surface soils(Ap horizons) are brown to dark brown sandy loam. The subsoils(B horizons) are yellowish red to red sandy clay loam to sandy loam and the soil profile development is weak. The Songjeong series, the surface soils (Ap horizons) are washed by erosion, so the subsoils are revealed on the surface, and these are dark red silty clay loam. The subsoils (B horizons) are red silty clay loam and thin clay cutans are formed on the ped faces of the structure. The substrata of two soil series are deeply weathered granitic saprolite. 2. The physical and chemical characteristics. The distribution of clay content tends to increase from surfaces to subsoils with depth gradually. On the Yesan series, the content of clay is less than 18%, soil pH (6.0 in the surface-soil, 4.5-5.0 in the subsoil), the content of organic matter (1.8% in the surface soil, 0.1~0.4% in the subsoil), available phosphate (40 ppm), the cation exchange capacity(4~8 me/100 gr) are very low, and the base saturation (57.8% in the surface soil, 46.3% in the subsoil) is moderate. On the Songjeong series, the content of clay is 30~40%, pH (5.7-6.0), the content of in organic matter (1.25% in the surface soil, 0.1~0.4% in the subsoil), available phosphate(4 ppm), the cation exchange capacity(6.2 me/100 gr in the surface soil, 2~6 me/100gr in the subsoil) are very low, and the base saturation(28.1% in the surfacesoil, 16~23% in the subsoil) is also low. 3. The Yesan and Songjeong series are for med under a temperate humid climate, and classified as Red Yellow Soils in the old classification system. According to U.S.D.A. 7th approximation the former belongs to Typic Dystrochrepts in Inceptisols, and the latter, Typic Hapludults in Ultisols.

  • PDF

Mega Irises: Per-Pixel Projection Illumination Compensation for the moving participant in projector-based visual system (Mega Irises: 프로젝터 기반의 영상 시스템상에서 이동하는 체험자를 위한 화소 단위의 스크린 투사 밝기 보정)

  • Jin, Jong-Wook;Wohn, Kwang-Yun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.17 no.4
    • /
    • pp.31-40
    • /
    • 2011
  • Projector-based visual systems are widely used for VR and experience display applications. But the illumination irregularity on the screen surface due to the screen material and its light reflection properties sometimes deteriorates the user experience. This phenomenon is particularly troublesome when the participants of the head tracking VR system such as CAVE or the motion generation experience system continually move around the system. One of reason to illumination irregularity is projector-screen specular reflection component to participant's eye's position and it's analysis needs high computation complexity. Similar to calculate specular lighting term using GPU's programmable shader, Our research adjusts every pixel's brightness in runtime with given 3D screen space model to reduce illumination irregularity. For doing that, Angle-based brightness compensate function are considered for specific screen installation and modified it for GPU-friendly compute and access. Two aspects are implemented, One is function access transformation from angular form to product and the other is piecewise linear interpolate approximation.

An Analytical Model of the First Eigen Energy Level for MOSFETs Having Ultrathin Gate Oxides

  • Yadav, B. Pavan Kumar;Dutta, Aloke K.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.10 no.3
    • /
    • pp.203-212
    • /
    • 2010
  • In this paper, we present an analytical model for the first eigen energy level ($E_0$) of the carriers in the inversion layer in present generation MOSFETs, having ultrathin gate oxides and high substrate doping concentrations. Commonly used approaches to evaluate $E_0$ make either or both of the following two assumptions: one is that the barrier height at the oxide-semiconductor interface is infinite (with the consequence that the wave function at this interface is forced to zero), while the other is the triangular potential well approximation within the semiconductor (resulting in a constant electric field throughout the semiconductor, equal to the surface electric field). Obviously, both these assumptions are wrong, however, in order to correctly account for these two effects, one needs to solve Schrodinger and Poisson equations simultaneously, with the approach turning numerical and computationally intensive. In this work, we have derived a closed-form analytical expression for $E_0$, with due considerations for both the assumptions mentioned above. In order to account for the finite barrier height at the oxide-semiconductor interface, we have used the asymptotic approximations of the Airy function integrals to find the wave functions at the oxide and the semiconductor. Then, by applying the boundary condition at the oxide-semiconductor interface, we developed the model for $E_0$. With regard to the second assumption, we proposed the inclusion of a fitting parameter in the wellknown effective electric field model. The results matched very well with those obtained from Li's model. Another unique contribution of this work is to explicitly account for the finite oxide-semiconductor barrier height, which none of the reported works considered.

Approximate Shape Optimization Technique by Sequential Design Domain (순차설계영역을 이용한 근사 형상최적에 관한 연구)

  • 김우현;임오강
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.1
    • /
    • pp.31-38
    • /
    • 2004
  • Mechanical design process is generally accomplished by design, analysis, and test. Designers use programs fitting purpose, and obtain repeatedly a response of a simulation program, a sub-program for optimization. In this paper, shape optimization using approximate optimization technique is carried out with sequential design domain(SDD). In addition, algorithm executing Pro/Engineer and ANSYS automatically are adopted in the approximate optimization program by SDD. It is difficult for design problem to be approximated accurately for the whole range of design space. However, more or less accurate approximation is constructed if SDD is applied to that case. SDD starts with a certain range which is off-seted from midpoint of an initial design domain and then SDD of the next step is determined by a move limited. Convergence criterion is defined such that optimal point must be located within SDD during the two steps. Also, the PLBA(Pshenichny-Lim-Belegundu-Arora) algorithm is used to solve approximate optimization problems. This algorithm uses the second-order information and the active set strategy, in order to seek the direction of design variables.

Chine Shape Optimization for Directional Stability at High Angle of Attack (고 받음각에서의 방향 안정성 향상을 위한 Chine 형상 최적설계)

  • Park, Hyeong-Uk;Park, Mee-Young;Lee, Jae-Woo;Byun, Yung-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.9
    • /
    • pp.825-834
    • /
    • 2008
  • Nose chine shape optimization study has been performed to maximize the directional stability at high angle of attack supersonic flow. Various chine shapes are generated using super ellipse equation. By numerically investigating the directional stability characteristics of those shapes, the baseline configuration for the shape optimization has been selected using the three-dimensional Navier-Stokes equations. The configuration is represented by the NURBS curves which can adjust the surface geometry by the control points. The response surfaces are constructed to obtain optimum shape which has high directional stability characteristics and lift-to-drag ratio. From this study, an efficient configuration design and optimization process which utilizes the parameter-based configuration generation techniques and approximation method has been established, then 29% improvement of the directional stability by strong vortexes from chine nose is accomplished.

New Discrete Curvature Error Metric for the Generation of LOD Meshes (LOD 메쉬 생성을 위한 새로운 이산 곡률 오차 척도)

  • Kim, Sun-Jeong;Lim, Soo-Il;Kim, Chang-Hun
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.27 no.3
    • /
    • pp.245-254
    • /
    • 2000
  • This paper proposes a new discrete curvature error metric to generate LOD meshes. For mesh simplification, discrete curvatures are defined with geometric attributes, such as angles and areas of triangular polygonal model, and dihedral angles without any smooth approximation. They can represent characteristics of polygonal surface well. The new error metric based on them, discrete curvature error metric, increases the accuracy of simplified model by preserving the geometric information of original model and can be used as a global error metric. Also we suggest that LOD should be generated not by a simplification ratio but by an error metric. Because LOD means the degree of closeness between original and each level's simplified model. Therefore discrete curvature error metric needs relatively more computations than known other error metrics, but it can efficiently generate and control LOD meshes which preserve overall appearance of original shape and are recognizable explicitly with each level.

  • PDF

Electron Mobility Model in Strained Si Inversion Layer (응력변형을 겪는 Si 반전층에서 전자 이동도 모델)

  • Park Il-Soo;Won Taeyoung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.3 s.333
    • /
    • pp.9-16
    • /
    • 2005
  • The mobility in strained Si inversion layer on $Si_{1-x}Ge_x$ is calculated considering a quantum effect(subband energy and wavefunction) in inversion layer and relaxation time approximation. The quantum effect in inversion layer is obtained by using self-consistent calculation of $Schr\ddot{o}dinger$ and Poisson equations. For the relaxation time, intravalley and intervalley scatterings are considered. The result shows that the reason for the enhancement in mobility as Ge mole fraction increases is that the electron mobility in 2-폴드 valleys is about 3 times higher than that of 4-폴드 valleys and most electrons are located in 2-폴드 valleys as Ge mole fraction increases. Meanwhile, for the phonon-limited mobility the fitting to experimental data, Coulomb and surface roughness mobilities are included in total mobility, Deformation potentials are selected for the calculated effective field, temperature, and Ge mole fraction dependent mobilities to be fitted to experimental data, and then upgraded data can be obtained by considering nonparabolicity in Si band structure.

Power Estimation and Optimum Design of a Buoy for the Resonant Type Wave Energy Converter Using Approximation Scheme (근사기법을 활용한 공진형 파력발전 부이의 발전량 추정 및 최적설계)

  • Koh, Hyeok-Jun;Ruy, Won-Sun;Cho, Il-Hyoung
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.85-92
    • /
    • 2013
  • This paper deals with the resonant type of a WEC (wave energy converter) and the determination method of its geometric parameters which were obtained to construct the robust and optimal structure, respectively. In detail, the optimization problem is formulated with the constraints composed of the response surfaces which stand for the resonance period(heave, pitch) and the meta center height of the buoy. Use of a signal-to-noise ratio calculated from normalized multi-objective results with the weight factor can help to select the robust design level. In order to get the sample data set, the motion responses of the power buoy were analyzed using the BEM (boundary element method)-based commercial code. Also, the optimization result is compared with a robust design for a feasibility study. Finally, the power efficiency of the WEC with the optimum design variables is estimated as the captured wave ratio resulting from absorbed power which mainly related to PTO (power take off) damping. It could be said that the resultant of the WEC design is the economical optimal design which satisfy the given constraints.

Sound absorption of micro-perforated elastic plates in a cylindrical impedance tube (원통형 임피던스 튜브 내 미세천공 탄성 판의 흡음)

  • Kim, Hyun-Sil;Kim, Bong-Ki;Kim, Sang-Ryul;Lee, Seong-Hyun;Ma, Pyung-Sik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.4
    • /
    • pp.181-187
    • /
    • 2018
  • In this paper, sound absorption of micro-perforated elastic plates installed in an impedance tube of a circular cross-section is discussed using an analytic method. Vibration of the plates and sound pressure fields inside the duct are expressed in terms of an infinite series of modal functions, where modal functions in the radial direction is given in terms of the Bessel functions. Under the plane wave assumption, a low frequency approximation is derived by including the first few plate modes, and the sound absorption coefficient is given in terms of an equivalent impedance of a single surface. The sound absorption coefficient using the proposed formula is in excellent agreement with the result by the FEM (Finite Element Method), and shows dips and peaks at the natural frequencies of the plate. When the perforation ratio is very small, the sound absorption coefficient is dominated by the vibration effect. However, when the perforation ratio reaches a certain value, the sound absorption is mainly governed by the rigid MPP (Micro-Perforated Plate), while the vibration effect becomes very small.