New Discrete Curvature Error Metric for the Generation of LOD Meshes

LOD 메쉬 생성을 위한 새로운 이산 곡률 오차 척도

  • Published : 2000.03.15

Abstract

This paper proposes a new discrete curvature error metric to generate LOD meshes. For mesh simplification, discrete curvatures are defined with geometric attributes, such as angles and areas of triangular polygonal model, and dihedral angles without any smooth approximation. They can represent characteristics of polygonal surface well. The new error metric based on them, discrete curvature error metric, increases the accuracy of simplified model by preserving the geometric information of original model and can be used as a global error metric. Also we suggest that LOD should be generated not by a simplification ratio but by an error metric. Because LOD means the degree of closeness between original and each level's simplified model. Therefore discrete curvature error metric needs relatively more computations than known other error metrics, but it can efficiently generate and control LOD meshes which preserve overall appearance of original shape and are recognizable explicitly with each level.

본 논문은 LOD 메쉬 생성을 위한 이산 곡률을 이용한 새로운 오차 척도를 제안한다. 메쉬의 간략화를 위한 이산 곡률은, 부드러운 곡면 추정의 과정 없이 꼭지점 중심의 표면각과 표면적, 이면각 등 의 기하학적 속성만을 이용하여 계산되는 곡률로서, 표면의 특징을 잘 표현하고 있다. 그러므로 이산 곡률에 기반한 새로운 이산 곡률 오차 척도는 원래 모델의 기하학적 형상을 최대로 유지하여 간략화 모델의 정확성을 증가 시키고, 전역 오차 척도로 사용될 수 있다. 또한, 본 논문에서는 LOD 모델을 간략화 비율이 아닌, 오차 척도를 기준으로 생성할 것을 제안한다. 왜냐 하면 LOD는 원래 모델과 각 단계의 간략화된 모델 사이의 근접도에 따라 나누어진 단계를 뜻하기 때문이다. 따라서 이산 곡률 오차 척도는 기존의 오차 척도에 비해 비교적 많은 수학적 연산이 필요하나, 각 단계의 LOD 모델이 원래 모델의 형상을 잘 유지하면서 간략화 비율이 아닌 상세도의 차이를 가지도록 효과적으로 LOD를 생성, 제어할 수 있다.

Keywords

References

  1. V. Borrelli. Courbures Discretes. Master's thesis, Universite Claude Bernard-Lyon 1, 1993
  2. A. Ciampalini, P. Cignoni, C. Montani, and R Scopigno. Multiresolution Decimation Based on Global Error. Technical Report C96-021, CNUCE-C.N.R., Pisa, Italy, July 1996
  3. P. Cignoni, C. Montani, and R. Scopigno. A Comparison of Mesh Simplification Algorithms COLOR TABLES. Technical Report 97-08, Istituto CNUCE-C.N.R., Pisa, Italy, June 1997
  4. J. Cohen, A. Varshney, D. Manocha, G. Turk, H. Weber, P. Agarwal, F. Brooks, and W. Wright. Simplification Envelopes. Computer Graphics (SIGGRAPH '96 Proceedings), pages 119-128, August 1996 https://doi.org/10.1145/237170.237220
  5. M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, and W. Stuetzle. Multiresolution Analysis of Arbitrary Meshes. Computer Graphics (SIGGRAPH '95 Proceedings), pages 173-182, August 1995 https://doi.org/10.1145/218380.218440
  6. C. Erikson. Polygonal Simplification: An Overview. Technical Report TR-96-016, University of North Carolina - Chapel Hill, 1996
  7. B. Falcidieno and M. Spagnuolo. Geometric Reasoning for the Extraction of Surface Shape Properties. In D. Thalmann and N. M. Thalmann, editors, Communication with Virtual Worlds (Proc.CGI'93), pages 166-178. Springer-Verlag, 1993
  8. M. Garland and P. Heckbert. Simplifying Surfaces with Color and Texture Using Quadric Error Metrics. IEEE Visualization '98 Proceedings, pp. 263-169, 1998 https://doi.org/10.1109/VISUAL.1998.745312
  9. B. Hamann. A Data Reduction Scheme for Triangulated Surfaces. Computer Aided Geometric Design, 11(2):197-214, April 1994 https://doi.org/10.1016/0167-8396(94)90032-9
  10. P. S. Heckbert and M. Garland. Survey of Polygonal Surface Simplification Algorithms. Technical Report, Carnegie Mellon University, 1997
  11. P, Hinker and C. Hansen. Geometric Optimization. In Proc. Visualization '93, pages 189-195, San Jose, CA, October 1993
  12. H. Hoppe. Surface Reconstruction from Unorganized Points. Ph.D. thesis, University of Washington, 1994
  13. H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stultzle. Mesh Optimization. Computer Graphics(SIGGRAPH '93 Proceedings), pages 19-26, August 1993 https://doi.org/10.1145/166117.166119
  14. A. D. Kalvin and R. H. Taylor. Superlaccs: Polygonal Mesh Simplification with Bounded Error. TR RC 19808(#877702), IBM Research Division, T. J. Watson Research Center, Yorktown Height, NY 10958, 1994
  15. R. Klein, G. Liebich, and W. Strasser. Mesh Reduction with Error Control. In R. Yagel, editor, Visualization 96. ACM, November 1996 https://doi.org/10.1109/VISUAL.1996.568124
  16. A. W. F. Lee, W. Sweldens, P. Schroeder, L. Cowsar, and D. Dobkin. MAPS: Multiresolution Adaptive Parameterization of Surfaces. SIGGRAPH '98, pages 105- 114, 1998 https://doi.org/10.1145/280814.280828
  17. B. O'Neill. Elementary Differential Geometry. Second Edition, Academic Press, USA, 1997
  18. E. Puppo and R. Scopigno. Simplification, LOD and Multiresolution - Principles and Applications. In EUROGRAPHICS '97 Tutorial Notes(ISSN 1017-4656), Eurographics Association, Aire-la-Ville(CH), 1997 (PS97 TN4)
  19. J. R. Rossignac and P. Borrel. Multiresolution 3 D Approximations for Rendering Complex Scenes. TR RC 17697(#77951), IBM Research Division, T. J. Watson Research Center, Yorktown Heights, NY 10958, 1992
  20. W. J. Schroeder, J. A. Zarge, and W. E. Lorensen. Decimation of Triangle Meshes. Computer Graphics (SIGGRAPH '92 Proceedings). 26(2):65-70, July 1992 https://doi.org/10.1145/133994.134010
  21. G. Turk. Re-Tiling Polygonal Surfaces. Computer Graphics(SIGGRAPH '92 Proceedings), 26(2):55-64, July 1992 https://doi.org/10.1145/142920.134008
  22. P. Veron and J. C. Leon. Static Polyhedron Simplification Using Error Measurements. Computer-Aided Design, Vol. 29. No.4, pp. 287-298, Elsevier Science Ltd., 1997 https://doi.org/10.1016/S0010-4485(96)00057-7
  23. W. Welch. Serious Putty: Topological Design for Variational Curves and Surfaces. Ph.D. thesis, Computer Science Department, Carnegie Mellon University, Pittsburgh, Pennsylvania, 1995