• Title/Summary/Keyword: surface acting

Search Result 561, Processing Time 0.023 seconds

On-demand Acoustofluidic Droplet Generation with Tunable Droplet Volume (음향미세유체역학적 미세액적 생성 및 부피 제어)

  • Kim, Woo Hyuk;Park, Jinsoo
    • Journal of the Korean Society of Visualization
    • /
    • v.18 no.2
    • /
    • pp.46-50
    • /
    • 2020
  • On-demand droplet generation with tunable droplet volume is fundamental in many droplet microfluidic applications. In this work, we propose an acoustofluidic method to produce water-in-oil droplets with prescribed volume in an on-demand manner. Surface acoustic waves produced from a slanted interdigital transducer are coupled with parallel laminar streams of dispersed and continuous phase fluids. Acoustic radiation force acting on the fluid interface enable generation of droplets in a microfluidic chip. We expect that the proposed acoustofluidic droplet generation method will serve as a promising tool for on-demand droplet generation with on-chip droplet volume control.

Quantification of Thermal Shock in a Piezoelectric Pressure Transducer (압전식 압력센서에서 발생하는 열충격 효과 정량화)

  • Lee, Seok-Hwan;Choi, Wook;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.5
    • /
    • pp.96-103
    • /
    • 2005
  • One of the major problems limiting the accuracy of piezoelectric transducers fur cylinder pressure measurements in an internal combustion (IC) engine is the thermal shock. Thermal shock is generated from the temperature variation during the cycle. This temperature variation results in contraction and expansion of the diaphragm and consequently changes the force acting on the quartz in the pressure transducer An empirical equation for compensation of the thermal shock error was derived from consideration of the diaphragm thermal deformation and actual pressure data. The result indicate that the thermal shock equation provides reliable correction based on known surface temperature swing.

Dynamic Analysis of Rectangular Liquid Storage Structures Excited by Horizontal and Vertical Ground Motions (수평 및 수직 지반운동을 받는 직사각형 유체 저장 구조물의 동적 해석)

  • Park, Jang-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.3 s.67
    • /
    • pp.108-117
    • /
    • 2004
  • Dynamic analysis method is Presented for analyzing rectangular liquid storage structures excited by horizontal and vertical ground motions. The irrotational motion of invicid and incompressible ideal fluid in rigid rectangular liquid storage structures subjected to horizontal and vertical ground motions and the motion of fluid induced by structural deformation are expressed by analytic solutions. Analysis methods are obtained by applying analytic solutions of the fluid motion to finite element equation of the structural motion. The fluid-structure interaction effect is reflected into the coupled equation as added fluid mass matrix. The free surface sloshing motion, hydrodynamic pressure acting on the wall and structural behavior due to horizontal and vertical ground motions are obtained by the presented method.

Numerical Simulation of Two-dimensional Breaking Waves (2차원 쇄파의 수치해석)

  • Il-H.,Cho;Hang-S.,Choi
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.25 no.4
    • /
    • pp.1-6
    • /
    • 1988
  • In this paper two-dimensional breaking waves of plunger type are numerically simulated both on an even bottom and on a sinusoidally-varying bottom within the framework of potential theory. Based on the boundary integral method derived by Vinje and Brevig, fluid particles on the free surface are treated exactly by using semi-Lagrangian time-stepping. Numerical instability, in particular when the wave front becomes vertical, is discussed and the regriding method of nodal points has been found promising. Numerical accuracy is examined in terms of the wave energy and mass conservations. It is also found that the bottom topography affects significantly and the hydrostatic pressure contributes considerably to the nonoscillating force acting on the bottom, when waves are breaking.

  • PDF

Evaluation of a Propulsion Force Coefficients for Transportation of Wafers in an Air Levitation System (공기부상방식 반도체 웨이퍼 이송시스템의 추진력계수)

  • 문인호;황영규
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.9
    • /
    • pp.820-827
    • /
    • 2004
  • The propulsion force acting on a wafer in an air levitation system was measured accurately and then, the corresponding force coefficient was determined. The theoretical propulsion force on the wafer bottom surface were obtained by CFD simulations and from these results the propulsion force coefficient was deduced. The transportation velocity of a wafer was estimated by using both experimental and numerical force coefficients, for various air velocity of nozzle injection. When the numerical results are compared to the experimental data, the numerical results agree well Quantitatively.

Preparation and Characterization of Poly(D,L-lactic acid) Microspheres Containing Alprazolam (Alprazolam함유 poly(D,L-lactic acid) Microsphere의 제조 및 평가)

  • Yong, Chul-Soon;Kwon, Mi-Ra;Park, Sae-Hae;Oh, Doo-Man
    • Journal of Pharmaceutical Investigation
    • /
    • v.26 no.1
    • /
    • pp.13-22
    • /
    • 1996
  • Poly(D,L-lactic acid) (PLA) microspheres containing alprazolam(APZ) were prepared by a solvent-emulsion evaporation method and their release patterns were investigated in vitro. Various batches of microspheres with different size and drug content were obtained by changing the ratio of APZ to PLA, PLA concentration in the dispersed phase and stirring rate. Rod-like APZ crystals on microsphere surface, which were released rapidly and could act as a loading dose, were observed with increasing drug content. The release rate was increased with increase in drug contents and decrease in the molecular weight of PLA. The release rate of APZ for long-acting injectable delivery system in vitro, which would aid in predicting in vitro release profile, could be controlled by properly optimizing various factors affecting characteristics of microspheres.

  • PDF

Vibration Analysis of the Continuous Circular Cylindrical Shell with the Clamped-clamped Supports at Two End Edges (양단이 고정지지된 연속원통셸의 진동특성 해석)

  • 한창환;이영신
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.2
    • /
    • pp.97-107
    • /
    • 2002
  • The continuous circular cylindrical shells are widely used for the high performance structures of aircraft, spacecraft, missile, nuclear fuel rod shell and so on. In this paper, a method for the vibrational analysis of the continuous circular cylindrical shells with the clamped-clamped supports at two end edges is developed by using the modal expansion method. Forces and/or moments acting on the shell surface are expressed in terms of the Dirac Delta Function. Frequency equation of the continuous shell is also derided by the application of the equilibrium of forces and the continuity of displacements at the boundary. Natural frequencies of the continuous shell are calculated numerically with mathematica 3.0 and they are compared with FEM results from the ANSYS 5.3 to improve the reliability of analytic solutions. Mode shares obtained by the FEM are Presented in this paper.

Sloshing Minimization Technique in Liquid Fuel Tank By the Use of Baffle (배플을 적용한 액체연료탱크 내의 슬로싱 억제 기법 연구)

  • 박기진;윤성호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.917-920
    • /
    • 2003
  • The sloshing phenomenon sometimes happens to occur in a liquid fuel tank due to the unexpected and/or inevitable vibrating conditions and may result in severe effects on the structural stability. This study deals with the development of experimental techniques for the evaluation of sloshing behaviors in the liquid fuel tank and for the identification of natural frequencies and mode shapes by varying with various vibrating conditions. Measurements of the pressure and load acting on the side surface of vibrated liquid fuel tank are carried in order to identify the effects of sloshing phenomenon by using various types of baffles. The results show that the baffles can be used to minimize the sloshing phenomenon in liquid fuel tank effectively

  • PDF

Evaluation on the Landslide Stability Triggered by Rainfall (강우로 인한 사면활동의 안정성 평가)

  • Sagong Myung
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1101-1106
    • /
    • 2004
  • Rainfall induced landslides are disasters causing sever damage on the human life and the infrastructures. In this paper, a simplified procedure to evaluate the slope stability problems induced by rainfall by modifying the Iverson's pressure head dispersion model. The proposed approach extends the applicability of the Iverson's model in to the cases of higher rainfall intensity than the permeability of the soil by incorporating the existence of overland flow. In addition, the Manning equation is applied to calculated the depth of overland flow. From the calculated depth of overland flow, shear stress acting on the surface is included for the driving component triggering the landslides. From the analysis of a case study, the long term rainfall alters the stability of slope.

  • PDF

5.1: Control of Electrical Characteristics of Solution Processed TFTs Depending on InGaZnO Composition Variation

  • Kim, Gun-Hee;Jeong, Woong-Hee;Ahn, Byung-Du;Shin, Hyun-Soo;Kim, Hyun-Jae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.524-526
    • /
    • 2009
  • The effects of In and Ga contents on characteristics of InGaZnO (IGZO) films grown by a sol-gel method and their thin film transistors (TFTs) have been investigated. Excess In incorporation into IGZO enhances the field effect mobilities of the TFTs due to the increase in conducting path ways, and decreases the grain size and the surface roughness of the films because more $InO_2^-$ ions induce cubic stacking faults with IGZO. Ga incorporation into results in decrease in carrier concentration of films and off-current of TFTs since Ga ion forms stronger chemical bonds with oxygen than Zn and In ions, acting as a carrier killer.

  • PDF