본 논문에서는 서포트 벡터 머신의 중요한 파라미터인 C와 σ값을 빠르고 정확하게 찾는 탐색 방법론을 제안한다. 기존에 알려진 격자 탐색 방식은 모든 경우를 비교하기 때문에 탐색속도가 느리다. 이러한 문제점을 개선하기 위해 본 논문에서는 탐색속도 향상을 위한 딥 서치 방식을 제안한다. 1단계에서는 C-σ 정확도지표를 4등분 한 뒤 각 영역의 중간 값을 탐색하여 가장 정확도 값이 높은 지점을 시작 지점으로 선택한다. 2단계에서는 선정된 시작지점을 다시 4등분한 뒤 정확도 값이 가장 큰 지점을 새로운 탐색지점으로 지정한다. 3단계에서는 탐색지점에 이웃한 8개의 지점들을 탐색하여 정확도 값이 가장 높은 곳을 새로운 시작 지점으로 선정한 뒤 해당 지점을 4등분하여 정확도 값을 계산한다. 마지막 단계에서는 이웃 지점의 값들보다 탐색지점의 정확도지표 값이 최댓값이 될 때까지 진행한다. 최댓값을 만족하지 않을시 2단계에서부터 반복하며 입력된 레벨 값만큼 반복을 진행한다. 베어링의 결함 및 정상 데이터를 사용하여 비교한 결과, 제안한 Deep search 알고리즘은 기존 알고리즘 보다 성능 및 탐색시간에서 우수성을 보였다.
이동중인 차량에 카메라를 설치하여 주행 중에 정지 또는 주행중인 자동차의 영상을 획득하여, 이를 인식하는 시스템을 제안한다. 주행 중에 획득한 영상에서 번호판 영역을 추출하기 위하여, 번호판 영역에서 나타나는 강한 수직 에지 성분을 이용하여 번호판 후보 영역들을 찾고 이진화 된 영상에서의 배경과 문자의 구성비를 따져 번호판 영역을 추출하는 방법을 사용한다. 자동차 번호판 인식을 위하여 다중 클래스 인식을 지원하는 SVM과 모듈라 신경망 인식 성능을 비교하였으며, 인식률을 높이기 위하여 SVM을 모듈라 신경망과 결합하여 다중 클래스 분류기로 확장하는 방법을 제안하고 실험하였다. 실험결과, 제안하는 분류기를 이용한 방법이 번호판 인식에 우수한 성능을 보임을 확인하였다.
IEIE Transactions on Smart Processing and Computing
/
제2권5호
/
pp.277-281
/
2013
Modern speaker verification systems based on support vector machines (SVMs) use Gaussian mixture model (GMM) supervectors as their input feature vectors, and the maximum a posteriori (MAP) adaptation is a conventional method for generating speaker-dependent GMMs by adapting a universal background model (UBM). MAP adaptation requires the appropriate amount of input utterance due to the number of model parameters to be estimated. On the other hand, with limited utterances, unreliable MAP adaptation can be performed, which causes adaptation noise even though the Bayesian priors used in the MAP adaptation smooth the movements between the UBM and speaker dependent GMMs. This paper proposes a sparse MAP adaptation method, which is known to perform well in the automatic speech recognition area. By introducing sparse MAP adaptation to the GMM-SVM-based speaker verification system, the adaptation noise can be mitigated effectively. The proposed method utilizes the L0 norm as a regularizer to induce sparsity. The experimental results on the TIMIT database showed that the sparse MAP-based GMM-SVM speaker verification system yields a 42.6% relative reduction in the equal error rate with few additional computations.
Electrocardiogram (ECG) signal gives a clear indication whether the heart is at a healthy status or not as the early notification of a cardiac problem in the heart could save the patient's life. Several methods were launched to clarify how to diagnose the abnormality over the ECG signal waves. However, some of them face the problem of lack of accuracy at diagnosis phase of their work. In this research, we present an accurate and successive method for the diagnosis of abnormality through Discrete Wavelet Transform (DWT), QRS complex detection and Support Vector Machines (SVM) classification with overall accuracy rate 95.26%. DWT Refers to sampling any kind of discrete wavelet transform, while SVM is known as a model with related learning algorithm, which is based on supervised learning that perform regression analysis and classification over the data sample. We have tested the ECG signals for 10 patients from different file formats collected from PhysioNet database to observe accuracy level for each patient who needs ECG data to be processed. The results will be presented, in terms of accuracy that ranged from 92.1% to 97.6% and diagnosis status that is classified as either normal or abnormal factors.
Journal of information and communication convergence engineering
/
제20권4호
/
pp.295-302
/
2022
This paper contains the development of a smart power device designed to collect load power data from industrial manufacturing machines, predict future variations in load power data, and detect abnormal data in advance by applying a machine learning-based prediction algorithm. The proposed load power data prediction model is implemented using a Long Short-Term Memory (LSTM) algorithm with high accuracy and relatively low complexity. The Flask and REST API are used to provide prediction results to users in a graphical interface. In addition, we present the results of experiments conducted to evaluate the performance of the proposed approach, which show that our model exhibited the highest accuracy compared with Multilayer Perceptron (MLP), Random Forest (RF), and Support Vector Machine (SVM) models. Moreover, we expect our method's accuracy could be improved by further optimizing the hyperparameter values and training the model for a longer period of time using a larger amount of data.
토양수분은 농업에서 필수적인 자원으로 이의 변화와 부족을 예측함으로써 관리되어왔다. 최근 현장에서의 적용 용이성과 다양한 지역에 대한 일반화 가능성이 뛰어난 통계 및 기계학습 알고리즘을 활용한 토양수분 예측 연구가 활발히 진행되고 있다. 하지만 국내에서 생성되는 데이터를 이용한 연구들은 부족한 실정이다. 이에 본 연구는 1) 국내 공공기상 데이터만으로 충분한 성능을 내는 토양수분 예측 모델을 만들 수 있는지, 2) 어떠한 기계학습 모델이 국내에서 생산되는 데이터와 토양환경에서 가장 높은 예측 성능을 보이는지, 3) 단일 기계학습 모델을 이용해 다양한 지역에 적용 가능한지를 확인해보려 한다. 본 연구에서 Support Vector Machines (SVM), Random Forest (RF), Extremely Randomized Trees (ET), Gradient Boosting Machines (GBM), and Deep Feedforward Network (DFN) 알고리즘과 종관기상관측 자료, 농업기상관측자료를 활용하여 안동, 보성, 철원, 순천 지역의 토양 수분을 예측하는 모델을 만들었다. 그 결과, GBM을 이용한 모델이 R2 : 0.96, Root Mean Squared Error(RMSE) : 1.8로 가장 낮은 예측 오차를 보였다. 또한 GBM을 사용한 모델이 가장 낮은 지역간 예측 오차 분산을 보여 가장 일반화하기에 적절한 모델로 확인되었다.
기존의 내용기반 스팸메일 분류는 전자메일이 이미지를 많이 가지고 있고 텍스트는 적게 가지고 있을 경우에는 내용을 분석하기 어려우므로 스팸메일을 분류하는 데 한계가 있다. 이와 같은 문제를 해결하기 위하여 본 논문에서는 전자메일의 구조를 분석하는 링크구조분석 스팸메일 분류 알고리즘을 제안한다. 이것은 전자메일 안의 하이퍼링크의 개수와 하이퍼링크가 가리키는 웹 문서들이 다른 웹 문서에 의해 링크된 수를 측정하여 전자메일의 중요도를 계산한 후 의사결정트리를 학습하여 스팸메일과 정상메일을 분류한다. 또한 위의 링크구조분석 알고리즘과 하이퍼링크의 서버 주소만을 이용한 변형된 링크구조 분석 알고리즘, 그리고 SVM(support vector machine)을 이용한 내용기반 방법을 다수결 원칙으로 결합한 통합 스팸메일 분류 시스템을 제안한다. 실험 결과, 제안한 링크구조분석 알고리즘은 기존의 내용기반 방법 보다 스팸메일 분류 정확도가 94.8%로 약간 향상되었으며 또한 통합 스팸메일 분류 시스템도 내용기반 방법과 비교하여 향상된 97.7%를 나타냈다.
The prediction of protein secondary structure has been an important bioinformatics tool that is an essential component of the template-based protein tertiary structure prediction process. It has been known that the predicted secondary structure information improves both the fold recognition performance and the alignment accuracy. In this paper, we describe several novel ideas that may improve the prediction accuracy. The main idea is motivated by an observation that the protein's structural information, especially when it is combined with the evolutionary information, significantly improves the accuracy of the predicted tertiary structure. From the non-redundant set of protein structures, we derive the 'potential' parameters for the protein secondary structure prediction that contains the structural information of proteins, by following the procedure similar to the way to derive the directional information table of GOR method. Those potential parameters are combined with the frequency matrices obtained by running PSI-BLAST to construct the feature vectors that are used to train the support vector machines (SVM) to build the secondary structure classifiers. Moreover, the problem of huge model file size, which is one of the known shortcomings of SVM, is partially overcome by reducing the size of training data by filtering out the redundancy not only at the protein level but also at the feature vector level. A preliminary result measured by the average three-state prediction accuracy is encouraging.
최근들어, 커널 기법(kernel method)은 패턴 분류, 함수 근사 및 비정상 상태 탐지 등의 분야에서 상당한 관심을 끌고 있다. 특히, 서포트 벡터 머신(support vector machine)이나 커널 주성분 분석(kernel principal component analysis) 등의 방법론에서 커널의 역할은 매우 중요한데, 이는 고전적인 선형 머신이 비선형성을 효과적으로 다룰 수 있도록 일반화 해줄 수 있기 때문이다. 본 논문에서는 커널 기반 가우시안 프로세스(gaussian process) 함수근사 기법과 서포트 벡터 학습을 이용하여 레이더와 강우계의 관측 데이터를 융합하는 문제를 고려한다. 그리고, 국내의 강원, 경북 및 충북에 걸쳐있는 지역에 대한 레이더 자료 및 강우계 자료를 대상으로 하여 본 논문에서 고려하는 방법론들에 의해 데이터 융합을 수행한 결과를 제시하고, 성능비교를 수행한다.
많은 시각적 정보를 포함한 비디오 데이터들의 자동화된 처리 기술 중, 비디오 데이터들의 시청자적인 정보를 보강시키고, 부가적인 정보를 첨가하기 위한 일환으로 자막을 삽입하는 경우가 많다. 이러한 자막은 때로 영상자료의 재사용성(reusability)을 저해하고, 원 영상을 훼손하는 경우가 발생한다. 본 논문에서는 영상의 재사용성을 높이고 원 영상 복원을 위해 Support Vector Machines(SVM)과 시공간적 영상복원 방법(spatiotemporal restoration)을 이용한 비디오 영상에서의 자동 문자 검출과 제거 방법을 제안한다. 연속적인 두 프레임 이상의 영상을 입력받아, 현재 프레임 영상에서 SVM을 이용하여 문자 영역을 검출한 다음, 검출된 문자 영역을 제거하고, 문자 영역에 의해 가려졌던 원 영상을 복원하기 위한 두 단계- 시간적 복원(temporal restoration)과 공간적 복원(spatial restoration)접근방법을 제안한다. 제안된 복원 방법은 글자 모션(text motion) 정보와 두 영상의 배경 차이(background difference)를 이용하여 영상을 그 특징에 따라 분류하고, 각 영상의 특징에 맞는 복원 방법을 적용한다. 제안된 방법은 다양한 종류의 영상에서 문자뿐만 아니라 관심의 대상이 되는 객체의 자동 검출 및 복원 등 다양한 응용분야를 포함한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.