References
- Allen, R. G., L. S. Pereira, D. Raes, and M. Smith, 1998: Crop evapotranspiration-guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Food and Agriculture Organization of the United Nations, Rome, 1-15.
- Breiman, L, 2001: Random forests. Machine learning 45(1), 5-32. https://doi.org/10.1023/A:1010933404324
- Cai, Y., W. Zheng, X. Zhang, L. Zhangzhong, and X. Xue, 2019: Research on soil moisture prediction model based on deep learning. PloS One 14(4).
- Choi, K. M., S. H. Kim, M. Son, and J. Kim, 2008: Soil moisture modelling at the mopsoil of a hillslope in the Gwangneung National Arboretum using a transfer function. Korean Journal of Agricultural and Forest Meteorology 10(2), 35-46. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2008.10.2.035
- Choi, S. W., S. J. Lee, J. Kim, B. L. Lee, K. R. Kim, and B. C. Choi, 2015: Agrometeorological observation environment and periodic report of korea meteorological administration: current status and suggestions. Korean Journal of Agricultural and Forest Meteorology 17(2), 144-155. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2015.17.2.144
- Cisty, M., F. Cyprich, and V. Soldanova, 2018: Prediction of soil moisture data by various regression techniques. Proceedings of International Multidisciplinary Scientific GeoConference, Surveying Geology and mining Ecology Management, Sofia, 383-389.
- Drucker, H., C. J. Burges, L. Kaufman, A. J. Smola, and V. Vapnik, 1997: Support vector regression machines. Advances in Neural Information Processing Systems 9, 155-161.
- Friedman, J. H., 2001: Greedy function approximation: a gradient boosting machine. Annals of Statistics 29(5), 1189-1232. https://doi.org/10.1214/aos/1013203451
- Geurts, P., D. Ernst, and L. Wehenkel, 2006: Extremely randomized trees. Machine Learning 63(1), 3-42. https://doi.org/10.1007/s10994-006-6226-1
- Gill, M. K., T. Asefa, M. W. Kemblowski, and M. McKee, 2006: Soil moisture prediction using support vector machines. Journal of the American Water Resources Association 42(4), 1033-1046. https://doi.org/10.1111/j.1752-1688.2006.tb04512.x
- Goodfellow, I., Y. Bengio, and A. Courville, 2016: Deep Learning. MIT press, 1-26.
- He, K., X. Zhang, S. Ren, and J. Sun, 2015: Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. Proceedings of the IEEE international conference on computer vision, Institute of Electrical and Electronics Engineers, Santiago, 1026-1034.
- https://data.kma.go.kr/data/grnd/selectAsosRltmList.do?pgmNo=72 (2019. 12. 09)
- https://data.kma.go.kr/data/grnd/selectAsosRltmList.do?pgmNo=36 (2019. 12. 09)
- Kingma, D. P., and J. Ba, 2014: Adam: a Method for Stochastic Optimization. Proceedings of Third International Conference for Learning Representations, San Diego.
- Kohavi, R., 1995: A study of cross-validation and bootstrap for accuracy estimation and model selection. Ijcai 14(2), 1137-1145.
- Laio, F., A. Porporato, L. Ridolfi, and I. Rodriguez-Iturbe, 2001: Plants in water-controlled ecosystems: active role in hydrologic processes and response to water stress: II. Probabilistic soil moisture dynamics. Advances in Water Resources 24(7), 707-723. https://doi.org/10.1016/S0309-1708(01)00005-7
- Natekin, A., and A. Knoll, 2013: Gradient boosting machines, a tutorial. Frontiers in Neurorobotics 7, 21pp. https://doi.org/10.3389/fnbot.2013.00021
- National Center for Atmospheric Research, 2004: Community Land Model version 3.0 (CLM3. 0) developer's guide. U. S. Department of Energy.
- National Weather Service, 1976: Catchment modeling and initial parameter estimation for the National Weather Service river forecast system. Office of Hydrology.
- Nielsen, D., 2016: Tree boosting with XGBoost-why does XGBoost win "every" machine learning competition? NTNU Norwegian University of Science and Technology.
- Oleson, K. W., Y. Dai, G. Bonan, M. Bosilovich, R. Dickinson, P. Dirmeyer, F. Hoffman, P. Houser, G. Y. Niu, P. Thornton, M. Vertenstein, Z. L. Yang, and X. Zeng, 2004: Technical description of the Community Land Model (CLM). NCAR Technical Note NCAR/TN-461+STR.
- Pavlenko, T, 2003: On feature selection, curse-ofdimensionality and error probability in discriminant analysis. Journal of Statistical Planning and Inference 115(2), 565-584. https://doi.org/10.1016/S0378-3758(02)00166-0
- Prakash, S., A. Sharma, and S. S. Sahu, 2018: Soil Moisture Prediction Using Machine Learning. Proceedings of 2018 Second International Conference on Inventive Communication and Computational Technologies, Coimbatore, Institue of Electrical and Electronics Engineers, 1-6.
- Shin, Y., B. P. Mohanty, and A. V. Ines, 2018: Development of non-parametric evolutionary algorithm for predicting soil moisture dynamics. Journal of Hydrology 564, 208-221. https://doi.org/10.1016/j.jhydrol.2018.07.003
- Song, J., D. Wang, N. Liu, L. Cheng, L. Du, and K. Zhang, 2008: Soil moisture prediction with feature selection using a neural network. Proceedings of 2008 Digital Image Computing: Techniques and Applications, Canberra, Institue of Electrical and Electronics Engineers, 130-136.
- Van Dam, J. C., J. Huygen, J. G. Wesseling, R. A. Feddes, P. Kabat, P. E. V. Van Walsum, P. Groenendijk, and C. A. Van Diepen, 1997: Theory of SWAP version 2.0; Simulation of water flow, solute transport and plant growth in the soil-wateratmosphere-plant environment, TD45.HM/10.97, DLO Winand Staring Centre, Wageningen.
- Vapnik, V., S. E. Golowich, and A. J. Smola, 1997: Support vector method for function approximation, regression estimation and signal processing. Advances in neural information processing systems 9, 281-287.