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Abstract

This paper contains the development of a smart power device designed to collect load power data from industrial manufacturing

machines, predict future variations in load power data, and detect abnormal data in advance by applying a machine learning-

based prediction algorithm. The proposed load power data prediction model is implemented using a Long Short-Term Memory

(LSTM) algorithm with high accuracy and relatively low complexity. The Flask and REST API are used to provide prediction

results to users in a graphical interface. In addition, we present the results of experiments conducted to evaluate the performance

of the proposed approach, which show that our model exhibited the highest accuracy compared with Multilayer Perceptron

(MLP), Random Forest (RF), and Support Vector Machine (SVM) models. Moreover, we expect our method's accuracy could be

improved by further optimizing the hyperparameter values and training the model for a longer period of time using a larger

amount of data.

Index Terms: Load Power, Smart Power Device, Industrial Manufacturing Machine, LSTM Model, Abnormal Data Detection

I. INTRODUCTION

Electrical power has become a basic requirement over the

last few decades. Hence, instability in power system voltage

constitutes a primary concern for power generation utilities,

regardless of whether power is being used for household

activities, education, office equipment, or production activi-

ties in manufacturing. In modern manufacturing, electricity

supports efficient and effective production operations in

which machines primarily function automatically using sen-

sor technology and applications. Thus, electricity is a critical

primary resource for a wide variety of general activities.

However, this naturally involves some unavoidable prob-

lems. The use of electrical power to operate various equip-

ment inherently involves some load-balancing issues.

Occasional instability in power generation or distribution

systems is the main problem that arises owing to variations

in load power, which increases excessive current and volt-

age. This leads to damage to machines and equipment and

negatively impacting machine lifetimes and performance as

well as production quality and labor productivity [1].

In particular, problems with load power tend to emerge in

modern manufacturing environments. Assets and equipment

must be appropriately monitored to solve these problems [2].

One key problem is that load power consumption requires

multiple parts and simultaneous measurements [3].

Numerous devices have been developed to detect load

power data to monitor the condition of machines in cases of

sudden instability. Moreover, hardware designed to detect

load power consumption has been extensively developed.

However, no existing method has adequately resolved this

issue.
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Information about load power is required to identify power

usage characteristics and to analyze and evaluate machine

equipment, machine lifetime, manufacturing performance,

production quality, and labor productivity in a manufacturing

environment. Hence, in this study, we propose a model to

predict changes in load power data to mitigate these issues

by utilizing information on daily load power data consump-

tion from industrial manufacturing machines. We also

designed smart devices to measure and transmit load power

data from an industrial machine in a manufacturing facility

as a hardware solution.

 The remainder of this study is organized as follows. Sec-

tion II briefly reviews the relevant literature. Section III

describes the proposed method to predict load power data.

Section IV describes the implementation and results. Finally,

Section V presents our conclusions.

II. RELATED WORKS

Several studies have considered load power data, focusing

on topics such as handling load power data due to unstable

load power, inaccurate load power data readings, and the

common problem of handling load power with big data [4].

Additionally, methods to predict the use of load power data

for public interest have recently begun to attract attention

[5]. Other studies have considered methods to deal with the

predictive problem using the concept of Variational Mode

Decomposition and dynamic adjustment Backpropagation

(BP) to improve the accuracy of electricity consumption data

owing to the redundant information and trend components

contained in the original power load data [6]. Although, the

authors identified a number of weaknesses, they noted that

further study was required to improve accuracy. Other stud-

ies have reported on the characteristics of load power con-

sumption data with respect to time, which typically involves

several types of problems that are difficult to mitigate. Thus,

an accurate prediction model is required to deal with elec-

tricity resources, particularly for business owners and the

government [7-8].

In this study, we developed a model to predict changes in

load power conditions in the manufacturing industry using a

Long Short-Term Memory (LSTM) model to monitor the

condition of load power data usage in industrial manufactur-

ing machines. The proposed method is designed to monitor

the conditions of connected machines with sufficient accu-

racy, contribute to maintaining machine lifetimes, and reduce

maintenance costs, as well as to maximize production perfor-

mance. Notably, this work is based on previous research

related to the design of smart devices and applications for

managing the load power of machines in industrial manufac-

turing facilities [9].

III. PROPOSED MODEL

A. Smart Device

Two smart devices were developed to support this

research, which were designed to detect machine load power

data in an industrial manufacturing environment. The smart

device consists of an Energy Metering Device (EMD)

designed to collect load power from the machine and com-

municate with a Smart Power Device (SPD).

The SPD is designed to collect data from the EMD with

additional information such as vibration and humidity. The

results are displayed on a small screen attached to the SPD

device to be stored in a database. Fig. 1 shows an implemen-

tation of the SPD device used to obtain the data. The SPD is

intended to be installed with current and voltage metering

devices, and can also function as an EMD when applied to

some machines.

B. Load Power Data

The load power data measures an electrical load in watts, a

unit of power. The load power requires significant equipment

to detect electricity at any given moment. In this study, the

load power consumption data focused on the periodic usage

patterns of industrial manufacturing machines over a given

number of days and certain combinations of information that

appeared periodically, such as frequency and humidity. Each

machine displayed a unique pattern of information during

the repetition period.

Fig. 2 illustrates the database design as a relational data-

base structure consisting of three entities, including Device_

info, which contains information about the device, Mod-

el_list, which explains all machine models, and Power_data,

which contains information related to the status condition of

the electrical machine. In this study, we used the Amazon

Web Service (AWS) to host a server with a MariaDB data-

base. In addition, the data shown here were obtained from

the SPD.

Fig. 1. Implemented Smart Devices.
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C. LSTM Model

In technical terms, the fundamental concept of the LSTM

architecture is that of the Recurrent Neural Network (RNN).

RNN models are considered a special case of neural net-

works and learn to predict the next step in a sequence based

on the previously observed steps. RNN models use sequen-

tial observations and learn from earlier stages to forecast or

predict future trends.

Data must be maintained during the initial stage while pre-

dicting the next sequence. In an RNN, the hidden layer acts

as the internal storage to store the information collected

during the initial stages of processing sequential data. RNN

models are “recurrent” because they perform a similar task

for each sequence element while utilizing information cap-

tured earlier to predict future values. One key challenge with

RNN models is that they retain only a small number of ini-

tial steps within the data sequence; thus, they are not suitable

for retaining longer sequences. This limitation has motivated

the development of other types of recurrent network such as

LSTM structures [10].

LSTM models were developed for improved performance

in situations in which an RNN model may be unsuitable,

such as missing gradients in backpropagation. In contrast,

LSTM models can address this problem more effectively. In

addition, both LSTM and RNN methods perform well with

time-series data [11]. Each LSTM comprises a set of cells or

modules in which data stream is captured and stored accord-

ingly. The cells resemble a transport pathway connecting

each module to convey past data and gather each module for

the present prediction. The different gates in each cell enable

data to be disposed, filtered, or added to the following cells.

The gates in LSTM cells are divided into three types, includ-

ing forget gates, memory gates, and output gates. These

gates are considered filters and function as part of the neural

network. The gates enable the cells to allow data to pass

through or discharge the value. However, this disposal is

optional.

A proposed predictive model was created using the LSTM

algorithm, which uses a sequence of past data to predict

electricity consumption. To evaluate the performance of the

proposed approach, we conducted an experiment with an

example dataset, and the experimental result demonstrates

that the proposed method performed well as a solution for

time-series data. The architecture of the proposed LSTM net-

work is illustrated in Fig. 3.

To construct this predictive model, we first collected the

data, then reformatted the date-time columns, and checked

unique data from datasets. Subsequently, we considered the

energy distribution and energy with respect to time, and then

resampled the data and constructed the model. Then, we

tested the data and finally generated the output prediction.

During the training process, embedding vectors that repre-

sent the characteristics and relationships of the profiles were

learned according to the voltages that appear in the sequence.

The LSTM learns to recognize the patterns that appear in

the energy sequence, and thus to predict future consumption

Fig. 3. Architecture of LSTM model.

Fig. 2. Relational Database Structure.
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based on a learned embedding vector. We collected data gen-

erated from a load power sequence over several weeks,

along with two additional input vectors consisting of the cur-

rent and the temperature for each day. With three LSTM lay-

ers and a SoftMax layer, the network predicts an expected

future load profile sequence for the next period.

IV. IMPLEMENTATION AND RESULTS

We began by preparing the training data. The data were

measured and collected from the smart devices, and some

data were missing owing to system and network connection

failures. However, estimating the missing values is beyond

the scope of this work; therefore, we did not attempt to do

so. The Flask framework and the REST API were used to

develop a user in terface to display the prediction results.

We adopted Flask because it can be implemented using the

Python programming language to facilitate integration with

existing predictive models. In addition, Flask is capable of

handling issues that occur from the server-side, handling

RESTful requests, and securing cookies on the client-side.

A. Experimental Setup

Table 1 illustrates the experimental environment and set-

tings implemented to develop a predictive model of load

power data consumption in an industrial manufacturing envi-

ronment based on the architecture of the proposed model, as

described in Fig. 3.

The dataset used to train the model comprised real data

from tests performed in an enterprise environment using an

SPD installed with current and voltage meters on the

machine. After the results were recorded, the current and

voltage were sent over a network to be stored in a database. 

To train the model, we utilized periodic power patterns of

industrial machines for load power data consumption. Some

daily consumption patterns repeatedly appeared in the load

power data, and several specific combinations of information

occurred periodically. Although each machine exhibited

unique information patterns and repeated periods, the con-

sumption load data were transformed into a predefined

sequence.

Fig. 4 illustrates the output of the load power data

received from the SPD to the MariaDB database. These data

comprise the results of tests performed by the company in

the form of detailed information.

Creating a cleaned master dataset was a crucial step in

constructing the proposed model. Specialized cleaning data

were used to check unique data from the datasets. The

results of data collected directly from the machines in the

database cannot be directly used to create machine learning

models because these raw data are likely to include many

null or zero values, and we observed a similar trend in the

data collected in this work. The raw data needs to be initially

cleaned by deleting or modifying a number of data columns,

including deleting duplicate values and outliers, which is

commonly referred to as data normalization. After cleaning

the master data, the cleaned data are used for a lower pro-

cessing time and a more precise projection and to simplify

the functionality of the algorithm, improve performance, per-

form energy distribution, and consider energy with respect to

time to predict the result.

An explanation of the detailed range, normal range, and

units of each data sample that may appear is provided in

Table 2.

Fig. 4. Sample of load power data from SPD.

Table 1. Experimental setup

No Description Values 

1 Environments
Tensorflow 1.8.0

Phyton 3.5

2 Optimizer Gradient Descent

3 Lost function seq2seq loss

4 Dropout probability: 0.2

5 Batch Batch size: 32

6 Regularization L2 regularizer

7 Gradient Clipping O

8 Learning Rate 10-2 

9 Softmax O
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B. Experimental Results

The following section explains the results of the predictive

model. The proposed LSTM network generates load power

sequence data with five features, including date and time,

voltage, current, temperature, and frequency, each day. These

five features representatively generate information related to

the load power data.

This model implements an average value for the move-

ment of the load power data in the form of a centralized time

series measured based on a real dataset for each second. To

describe load power consumption in a sequential manner, we

adopted an LSTM architecture as an effective and reliable

approach for sequential time-series signal decomposition.

In this study, the prediction model applied seventy-five

percent (75%) of the pre-processed form parameter dataset

as the training dataset. In addition, twenty-five percent

(25%) of the total data were used for the test dataset. The

results were subsequently compared with the original load

power data.

Based on the collected load power data, the model was

applied to predict future variations in the load power param-

eters, while the prediction technology was developed to pro-

vide the information in the form of a graph on a web page.

The proposed machine-learning-based load power data pre-

diction process is divided into seven steps.

1) Step 1 - Data Initialization

Initialization data are collected by locating initial values

for variable data that are implemented in the model as an ini-

tial state construction. Raw data collected from SPD and

EMD in the previous process were used in this step.

2) Step 2 - Reformatting the date and time columns

The date and time of the data must be reformatted as

required by the software required format (month, year, date,

time, and week) to verify the distribution of the number of

years or months and date.

3) Step 3 - Checking unique data from datasets

In this step, unique data are checked as to whether the data

are within an allowed tolerance or include in an abnormal

condition. Data considered as indicating an abnormal condi-

tion cannot be used for training. Therefore, data cleaning is

required to solve this problem. This is also useful to verify

the condition of the data distribution in terms of the time

required to reproduce the correct prediction result.

4) Step 4 - Resampling data

Resampling methods use a data sample to improve accu-

racy and quantify the uncertainty of a population parameter.

In this case, the sample comprised cleaned load power data

obtained from the manufacturing facility.

5) Step 5 - Create the model 

This stage presents the process of creating an LSTM model

adjusted to the environment described in Table 1 and Fig. 3.

6) Step 6 - Test data

This stage comprises a process used to test the model

using a prepared dataset.

7) Step 7 - Prediction Output

In this stage, the prediction results are displayed in the

form of a graph representing the actual conditions and the

prediction results.

To evaluate the proposed method, we tested MLP, RF, and

SVM models on the same dataset with the environment

adapted to the proposed model for comparison. The MLP

model included two hidden layers. In addition, the number

of units, dropout, and activation in each layer was deter-

mined carefully. SVM models include three import hyperpa-

rameters: kernel type, C, and γ. The kernel type determines

how the original data are mapped to a high-dimensional

space belonging to the Radial Basis Function, which is a fre-

quently used kernel function in SVM. RF classifiers are

ensemble models of several decision trees, where the n_esti-

Table 2. Detailed information of load power data

Measurement Range Normal Range Unit 

id 0~65535 - -

device_id 0~65535 -

r_voltage 0~655.35 V 200V ~ 240 V 0.01 V

s_voltage 0~655.35 V 200V ~ 240 V 0.01 V

t_voltage 0~65.535 A 1A ~ 5 A 0.001 A

r_current, 0~65.535 A 1A ~ 5 A 0.001 A

s_current, 0~65.535 A 1A ~ 1 A 0.001 A

t_current, 0~65.535 A 1A ~ 1 A 0.001 A

r_active_power -32.768~32.767 kW 0.22~1.10 0.001 kW

s_active_power -32.768~32.767 kW 0.22~1.10 0.001 kW

t_active_power -32.768~32.767 kVAR -0.010~0.010 0.001 kVAR

r_reactive_power -32.768~32.767 kVAR -0.010~0.010 0.001 kVAR

s_reactive_power -32.768~32.767 kVAR -0.010~0.010 0.001 kVAR

s_reactive_power -32.768~32.767 kVAR -0.010~0.010 0.001 kVAR

r_apparent_power -32.768~32.767 kVA 0.22~1.10 0.001 kVA

s_apparent_power -32.768~32.767 kVA 0.22~1.10 0.001 kVA

t_apparent_power -32.768~32.767 kVA 0.22~1.10 0.001 kVA

r_power_factor -1.000~+1.000 0.980 ~1.000 0.001

s_power_factor -1.000~+1.000 0.980 ~1.000 0.001

t_power_factor -1.000~+1.000 0.980 ~1.000 0.001

frequency 45.00~65.00 Hz 58~62 Hz 0.01 Hz

temp -128~127 oC 10~40 oC 1 oC

datetime - - -
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mators parameter determines the number of decision trees.

The maximum features and depth of each decision tree are

restricted.

To compare the proposed model with MLP, RF, and SVM

more objectively, the parameters of these models were opti-

mized using the respective hyperparameters. We used a neg-

ative cross-validation score as an objective function for the

SVM model, whereas the same objective function as in the

LSTM model was implemented for the MLP.

Fig. 5 illustrates the intermediate results generated through

the seven-step prediction process. The results were grouped

into states of usage energy and energy distribution, where

the results were consistent because the data cleaning had

been performed before processing these steps. As previously

described, the data cleansing was performed because the

estimation of missing values was considered beyond the

scope of this the present work.

Fig. 6 illustrates the final result of predicting load power

consumption from step seven of the prediction process for

the industrial manufacturing machine environment, where

the accuracy varied with the number of epoch iterations.

Fig. 5. Load power data from SPD. Fig. 6. Output Load Power Prediction Graph (LSTM, MPL, RF, and SVM).
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The performance of the proposed model and that of the

MLP, RF, and SVM models were evaluated quantitatively in

terms of the Mean Absolute Percentage Error (MAPE).

MAPE is a comparative indicator that eliminates the impact

of size. MAPE is defined by the following equation, where n

is the number of observations in the test set, y
t
 is the actual

value, and y’
t
 is the predicted value. [12]

(1)

Fig. 7 shows that the proposed LSTM model achieved the

best performance. The SVM was nearly as accurate as the

proposed model. However, its prediction results were

slightly lower than those of the proposed model. The MLP

models encountered roughly the same limitations as the

SVM; nonetheless, MLP performed slightly worse than

SVM. Moreover, the prediction of RF fluctuated consider-

ably. The accuracy of these methods can be improved by

extending the training time, because accuracy is roughly pro-

portional to the number of iterations, up to a point of dimin-

ishing returns.

V. CONCLUSIONS

In this study, we developed a method to obtain information

related to changes in load power data and predictions based

on an LSTM network in an industrial manufacturing envi-

ronment. Smart devices including the SPD and EMD were

developed and installed in manufacturing machines to detect

the load power consumption of each machine. The data

obtained from these smart devices were sent to MariaDB for

storage.

A sequence of machine load power data, including infor-

mation such as voltage, current, temperature, and frequency

information, was implemented as embedding vectors repre-

senting the characteristics and profile relationships of the

electrical load. Using the analyzed embedding vector sequence,

the LSTM network predicts the obtained data pattern as

sequence data. The experimental results demonstrate that the

proposed model exhibited the best prediction results with the

highest accuracy using the collected dataset compared with

MLP, RF, and SVM models. Furthermore, these results are

expected to support manufacturing operations and manage-

ment in monitoring the daily load power consumption of

industrial machines in manufacturing facilities to reduce sig-

nificant equipment damage due to unstable load power issue

conditions by considering various appropriate preventative

actions. Furthermore, we developed a user interface to dis-

play the prediction results using the Flask framework and the

REST API.

In future research, other machine learning algorithms must

be considered to determine which method may exhibit the

best performance in detecting load power data consumption

in an industrial manufacturing environment, considering that

excluding missing or unique values from the dataset may

limit network performance owing to the time intervals between

data points in the sequence.

Therefore, the methods must be developed to estimate or

deal with missing values, as well as inconsistent time inter-

vals; thus, consistency must be further considered based on

time-series data.
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