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Abstract

The prediction of protein secondary structure has been an important bioinformatics tool that is an
essential component of the template-based protein tertiary structure prediction process. It has been
known that the predicted secondary structure information improves both the fold recognition performance
and the alignment accuracy. In this paper, we describe several novel ideas that may improve the
prediction accuracy. The main idea is motivated by an observation that the protein’s structural
information, especially when it is combined with the evolutionary information, significantly improves the
accuracy of the predicted tertiary structure. From the non-redundant set of protein structures, we derive
the “potential” parameters for the protein secondary structure prediction that contains the structural
information of proteins, by following the procedure similar to the way to derive the directional
information table of GOR method. Those potential parameters are combined with the frequency matrices
obtained by running PSI-BLAST to construct the feature vectors that are used to train the support vector
machines (SVM) to build the secondary structure classifiers. Moreover, the problem of huge model file
size, which is one of the known shortcomings of SVM, is partially overcome by reducing the size of

training data by filtering out the redundancy not only at the protein level but also at the feature vector

level.

Introduction

The protein secondary structure prediction has
been an essential bioinformatics tool. Thanks to
the simplicity of problem description and the
abundance of the data that can be used to develop

a prediction method, the protein secondary

A preliminary result measured by the average three-state prediction accuracy is encouraging.

structure prediction problem has been arguably
the most popular bioinformatics research subject,
exhausting almost all the imaginable algorithms

(1].

the art, prediction methods are around 75% in

The accuracies of the most accurate, state of

terms of three-state prediction accuracy (Q;)

when they were applied to newly determined
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protein structures [2]. One practical utility of the
protein secondary structure prediction is that it
greatly aids the protein tertiary structure
prediction; it can significantly improve not only
the fold recognition performance but also the
alignment accuracy, resulting in producing more
accurate three dimensional structure models [3].
There are three types of approaches: nearest
neighbor methods such as NNSSP [4], statistical
methods such as GOR [5], and machine learning
approaches including the neural network (NN) [6]
and the support vector machine (SVM) [7].

The key to one of the most successful prediction
method, Psi-Pred [7], is the usage of the
evolutionary information that can be obtained

from the alignments.

multiple  sequence
Following earlier work by Rost and Sander {8], D.
Jones used the profiles of well-selected set of
proteins as the input to his NN training. Before
Rost and Sander’s seminal work, the prediction
accuracy (Qs) was bellow 70% due to the absence
of the evolutionary information in prediction
algorithms. One of those methods, commonly
known as GOR method [5], is based on statistical
analysis on known protein structures and
information theory. The prediction accuracy of the
original GOR method is about 68%. Although its
performance is worse than the popular “black
box” machine leamning approaches, it has one
distinct advantage that all the parameters of GOR
method have physical and statistical meaning,
thus it can give insights into the relationship
between sequence and structure. There was an
attempt to combine GOR method and the
evolutionary information to improve the accuracy

of GOR method [9). The authors of this paper
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utilized the fact that the proteins belonging to the
same protein family tend to have similar
structures. They were able to increase the
accuracy of GOR method by predicting the
secondary structures of not only a query protein
but also its homologous proteins, and combining
those predictions. A drawback of his approach is
that the predictions should be made as many times
as the number of the proteins homologous to a
query protein. A better approach is that instead of
using the directional information directly we first
calculate the “homolog-averaged” directional
information, which is the sum of directional
information weighted by the amino acid
frequencies observed at particular positions
among the family members, and then use those
parameters as an input to the machine learning
algorithm such as SVM.

It is well known that the structural information,
when it is used with the sequence information
significantly increases the

such as profile,

performance of the template-based tertiary

structure prediction [10]. The structural

information is wusually expressed as the
knowledge-based potentials that are obtained by
performing statistical analysis on known protein
structures. Motivated by this observation, we first
derive the “potential” for the secondary structure
prediction by following the procedure similar to
the way to derive the directional information table
of GOR method, and then those potential
parameters are combined with the frequency
matrices obtained from the multiple sequence
alignments to construct the feature vectors that are
used to train the support vector machines (SVM)

to build the secondary structure classifiers.



Methods

Structure Data

To derive ‘“potential” parameters (will be

described in the next subsection) for the
secondary structure prediction similar to the
directional information table of GOR, 1261
protein structures selected by PDB_SELECT [11]
were used. They are non-redundant and of high
resolution. We first calculated the eight-class
secondary structures (H, G I, E, B, C, T, and S)
by running DSSP [12], and reduced these DSSP
secondary structures to the three-class secondary
types CASP
classification convention, i,e., Helix = (H, G, ),

Beta strand = (E, B), and Coil (C, T, S). The

structure by following the

training and test sets for the SVM training were

prepared as follows; first, further reduce
redundancy by keeping at most two proteins and
removing the rest among the proteins with the
same SCOP [13] family level classification, and
then divide the remaining proteins into training
set and test set in such a way that test set does not
share any protein that has the same SCOP family
level classification with any protein in training set,
resulting in 339 proteins in training set and 339

proteins in test set.
Potential parameters

The “potential” parameters are obtained by

estimating the log odds ratios,

P(SLR)  i=12,.,n

I(S;R)) =log— 2=, """
’ pSHPR,) j=i=T,i+T

where S; is one of the three secondary structure
type (H, E, C) at the position i, R; the amino acid
type at the position j, n the number of residues,
p(S) the probability of finding the secondary
structure type S at the position i, p(S;, R) the
probability of finding the amino acid type R at the
position j, and p(S; R) the corresponding joint
probability.

Training support vector machines

Instead of using simply potential parameters, we

calculated  “homolog  averaged”  potential

parameters;
20
I(S; /)= I(S;R) U, R),
R=1

where f{j, R) is the frequencies of the amino acid
type R at the position j that are found in the
multiple sequence alignment by running the PSI-
BLAST [14]. Because these “homolog averaged”
potential parameters contain the evolutionary
information that are the key to the protein
structure, the feature vectors constructed from
these parameters should contain more resolving
power than simple potential parameters. It should
be recognized that by doing so we effectively
combine GOR method and the evolutionary
information similar to the previous work [9].
Moreover, our method is superior to the previous
work [9] because we do not need to repeat the
same prediction for all the protein family
members. The final feature vectors comprise of
the frequencies of occurrences of each amino
acids and the homolog-averaged potential

parameters for three secondary structure types
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within window size of 11. Therefore, the

dimension of the feature vectors is
253(=11*20+11*3).

The publicly available SVM"™ [15] was used to
train SVMs. To reduce the number of feature
vectors, while maintaining the performance, we
removed about half of feature vectors by
calculating Euclidean distances between all the
feature vectors, and removing about half of
feature vectors in such a way that none of all
possible pairs of feature vectors in the final
training data have smaller Euclidean distance than
the specified cutoff value. We construct three
binary classifiers, H/~H, E/~E, and C/~C, where ~
denotes negation. The radial basis functions (rbf)

with length-scale parameter g,

2
K(x;,x;)= exp(—ng,. —xj" )s
were used for the kernel functions. To handle

unbalanced data, we employed the technique that
used the different penalty parameters for true and
false data. As suggested by Platt [16], the outputs
from the SVM y(x) for the feature vectors x are

transformed to the posterior probabilities,

1
PO = e + 5]

where a and b are the adjustable parameters that
were chosen to have the optimal performance. To
make prediction, the secondary structure type
with the maximum posterior probability P(|x)
was selected, and the three-state prediction

accuracy Q; defined by,

_ #of residues correctly predicted

0, = x 100,

# of prediction made

was calculated. Also for each state /=(H,E,C), O,
defined by the % fraction of the number of

136

residues correctly predicted in state [ out of the
number of residues observed in state I, was

calculated.

Results and Discussion

We have tried several kemel functions including
linear, polynomial and rbf. As show in Table I,
the rdf with the length-scale parameter g = 0.1
seemed the optimal choice. For the regularization
parameter, we have not tried to optimize it, but
rather simply used the default values set by the
program SVM"™, 1t is also easy to recognize
from Table I that too large g values tend to over-

train the classifiers.

Table | The training and testing accuracies (%) of three

binary classifiers with various choice of the parameter g.

Classifier  g=0.05 g=0.1 g=02
H/~H
training 86.14 87.90 89.51
testing 84.24 84.44 83.52
E/~E
training 88.72 87.90 90.96
testing 87.16 87.38 86.64
C/~C
training 79.23 82.34 86.84
testing 76.54 76.67 75.95

A well-known problem of SVM is that the
fraction of training examples that become support
vectors is rather high, as shown in Table II, which
requires huge memory and long computation time
for prediction. Therefore, it is crucial to reduce
the number while

of training examples



maintaining the accuracy of classifiers. We were
able to achieve this objective by filtering
procedure that was explained in the previous
section without hurting the performance of the

classifiers.

Table Il The percentage of the training examples that become

support vectors for three classifiers

Table IV Prediction accuracies (%) of present method
compared with those of HS/RS126 and HS/CBS13. For

description of HS/RS126 and HS/CBS513, see the caption of

Table IIL.
Method Qs Qu Qe Qc
Present 73.31 76.80 56.41 79.49
HS/RS126 71.1 72.0 56.1 77.2
HS/CB513 729 74.8 58.6 79.0

Classifier %SVs
H/~H 45.50
E/~E 36.48
C/~C 59.98

Although the testing sets are different, the
classification accuracies of current work seem
better than those of previous work by Hua and

Sun (HS) [7], as shown in Table III.

Table I The accuracies (%) of binary classifiers.
HS/RS126 and HS/CB513 refer to the results on RS126 and

CB513 sets, respectively, by Hua and Sun [7].

Classifier HS/RS126 HS/CB513  Present
H/~H 80.36 83.02 84.44
E/~E 81.25 83.39 87.38
C/i~C 73.20 75.52 76.67

It should be pointed out, however, that it is
premature to argue that current method is better
than that of HS because the testing sets are
different. Nonetheless, it is worth mentioning that
the accuracies of current work are higher than
those for the benchmark set CB513 that has been
know to be an easy benchmark set.

Finally, the average three-state prediction
accuracy (Qs) of our method is shown and

compared with those by HS in Table IV.

Although it is not directly comparable, it is
reasonable to say that the performance of our
method compares favorably against that by HS.

The prediction accuracy of present method at
current stage of development is roughly 2% lower
than those of the most accurate secondary
structure prediction programs. There are several

reasons for lower performance.  First, the
number of proteins in training set is relatively
small, compared with that of Psi-Pred [6], which
has thousands of proteins as training purpose. It is
planned to add more proteins in our training set,
up to the level of Psi-Pred. Second, many
parameters are not optimized yet. The only
parameter that we have tried to optimize is the
parameter g. It is likely that the optimization of
the regularization parameter is important for the
performance enhancement. Third, we have only
tried one multi-class classification scheme. It is
clear that we need to develop more elaborate
multi-class classification scheme. Despite all
these, the performance of our program is
reasonably good at this stage of development.
Therefore, we would like to mention that our

preliminary result is highly encouraging.
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