• Title/Summary/Keyword: superparamagnetic iron oxide

Search Result 46, Processing Time 0.029 seconds

Control of Crystal Phase and Agglomeration of Iron Oxide Nanoparticles in Gas Phase Synthesis

  • Lee, Chang-Woo;Lee, Jai-Sung
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.424-425
    • /
    • 2006
  • The effects of reaction temperature and precursor concentration on the microstructure and magnetic properties of ${\gamma}-Fe_2O_3$ nanoparticles synthesized as final products of iron acetylacetonate in chemical vapor condensation (CVC) were investigated. Pure ${\gamma}-Fe_2O_3$ phase was obtained at temperature above $900^{\circ}C$ and crystallite size of ${\gamma}-Fe_2O_3$ nanoparticles decreased with lowering precursor concentration. Also, the coercivity decreases with decreasing crystallite size of nanopowder. The lowest coercivity was 7.8 Oe, which was obtained from the ${\gamma}-Fe_2O_3$ nanopowder sample synthesized at precursor concentration of 0.3M. Then, the crystallite size of ${\gamma}-Fe_2O_3$ nanoparticles was 8.8 nm.

  • PDF

Efficient In Vitro Labeling Rabbit Bone Marrow-Derived Mesenchymal Stem Cells with SPIO and Differentiating into Neural-Like Cells

  • Zhang, Ruiping;Li, Jing;Li, Jianding;Xie, Jun
    • Molecules and Cells
    • /
    • v.37 no.9
    • /
    • pp.650-655
    • /
    • 2014
  • Mesenchymal stem cells (MSCs) can differentiate into neural cells to treat nervous system diseases. Magnetic resonance is an ideal means for cell tracking through labeling cells with superparamagnetic iron oxide (SPIO). However, no studies have described the neural differentiation ability of SPIO-labeled MSCs, which is the foundation for cell therapy and cell tracking in vivo. Our results showed that bone marrow-derived mesenchymal stem cells (BM-MSCs) labeled in vitro with SPIO can be induced into neural-like cells without affecting the viability and labeling efficiency. The cellular uptake of SPIO was maintained after labeled BM-MSCs differentiated into neural-like cells, which were the basis for transplanted cells that can be dynamically and non-invasively tracked in vivo by MRI. Moreover, the SPIO-labeled induced neural-like cells showed neural cell morphology and expressed related markers such as NSE, MAP-2. Furthermore, whole-cell patch clamp recording demonstrated that these neural-like cells exhibited electrophysiological properties of neurons. More importantly, there was no significant difference in the cellular viability and $[Ca^{2+}]_i$ between the induced labeled and unlabeled neural-like cells. In this study, we show for the first time that SPIO-labeled MSCs retained their differentiation capacity and could differentiate into neural-like cells with high cell viability and a good cellular state in vitro.

A Study on Magnetic Properties of Amphiphilic Polymer Networks Nanocomposites by Mossbauer Spectroscopy (뫼스바우어 분광법에 의한 양친매성 고분자 망상구조 나노복합체의 자기적 성질 연구)

  • Yoon, In-Seop
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.6
    • /
    • pp.216-221
    • /
    • 2010
  • Magnetic nanocomposites contained iron oxide were synthesized by through cross-linking polymerization of dimethylacetamide (DMAc) solution and toluen solution on the amphiphilic polymer networks based on urethan acrylate nonionomer (UAN) precursor chains. For the study on microscopic structures and magnetic properties of the magnetic nanoparticles, FESEM and XRD and Mossbauer spectroscopy were used. The results investigated show that there are magnetic nanoparticles of $Fe_2O_3$ in samples and the magnetic nanocomposites contained iron oxide in polymer networks of UAN using DMAc solution are more smaller than using toluen solution. All of the Fe ions in the samples present $Fe^{3+}$ and the magnetic property of samples are paramagnetic by superparamagnetic effect at room temperature.

Study on Formation Mechanism of Iron Oxide Nanoparticles (산화철 나노입자의 형성 메커니즘에 대한 연구)

  • Kim, Dong-Young;Yoon, Seok-Soo;Takahashi, Migaku
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.5
    • /
    • pp.167-172
    • /
    • 2012
  • In order to analyze the formation mechanism of iron oxide nanoparticles, we measured the heat flow of $Fe(OL)_3$ precursor with temperature, and TEM images and AC susceptibility of aliquots samples sequentially taken from the reaction solution, respectively. The thermal decomposition of two OL-chain from $Fe(OL)_3$ produced the Fe-OL monomer, which were contributed to the formation of iron oxide nanoparticles. In the initial stage of nanoparticles formation, the small iron oxide nanoparticles had ${\gamma}-Fe_2O_3$ structure. However, as the iron oxide nanoparticles were rapidly growth, the iron oxide nanoparticles showed ${\gamma}-Fe_2O_3$-FeO core-shell structure which the FeO layer was formed on the surface of ${\gamma}-Fe_2O_3$ nanoparticles by insufficient oxygen supply from the reaction solution. These nanoparticles were transformed to $Fe_3O_4$ structure by oxidation during long aging time at high temperature. Finally, the $Fe_3O_4$ nanoparticles with high saturation magnetization and stable in the air could be easily synthesized by the thermal decomposition method.

A review: Synthetic strategy control of magnetite nanoparticles production

  • Yusoff, Ahmad H.M.;Salimi, Midhat N.;Jamlos, Mohd F.
    • Advances in nano research
    • /
    • v.6 no.1
    • /
    • pp.1-19
    • /
    • 2018
  • Iron oxide nanoparticles excite researcher interest in biomedical applications due to their low cost, biocompatibility and superparamagnetism properties. Magnetic iron oxide especially magnetite ($Fe_3O_4$) possessed a superparamagnetic behaviour at certain nanosize which beneficial for drug and gene delivery, diagnosis and imaging. The properties of nanoparticles mainly depend on their synthesis procedure. There has been a massive effort in developing the best synthetic strategies to yield appropriate physico-chemical properties namely co-precipitation, thermal decomposition, microemulsions, hydrothermal and sol-gel. In this review, it is discovered that magnetite nanoparticles are best yielded by co-precipitation method owing to their simplicity and large production. However, its magnetic saturation is within range of 70-80 emu/g which is lower than thermal decomposition and hydrothermal methods (80-90 emu/g) at 100 nm. Dimension wise, less than 100 nm is produced by co-precipitation method at $70^{\circ}C-80^{\circ}C$ while thermal decomposition and hydrothermal methods could produce less than 50 nm but at very high temperature ranging between $200^{\circ}C$ and $300^{\circ}C$. Thus, co-precipitation is the optimum method for pre-compliance magnetite nanoparticles preparation (e.g., 100 nm is fit enough for biomedical applications) since thermal decomposition and hydrothermal required more sophisticated facilities.

Study of Mössbauer Spectroscopy for Iron Oxides Synthesized by Pulsed Wire Evaporation (PEW) (전기선폭발법으로 제조된 철산화물의 뫼스바우어분광연구)

  • Uhm, Young Rang
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.5
    • /
    • pp.135-139
    • /
    • 2014
  • Iron-oxide nanopowders were synthesized by a pulsed wire evaporation (PWE) in various ambient gas conditions. SEM measurement indicates that the spherical iron nanoparticles are about 50 nm in diameter. The phase analysis for the produced iron-oxide powders was systematically investigated by using $M\ddot{o}ssbauer$ spectra and the results show that classified phases of $Fe_2O_3$ and $Fe_3O_4$ can be controlled by regulating the oxygen concentration in the mixed gas during the PWE process. A quadrupole line on the center of $M\ddot{o}ssbauer$ spectrum represents the superparamagnetic phase of 12 % from ${\gamma}-Fe_2O_3$ phase.

A Research on Superparamagnetic Iron Oxide Nanoparticles' Toxicity to U373MG Cell and its Effect on the Radiation Survival Curve (산화철 나노입자의 U373MG 세포 독성평가 및 방사선 세포생존 곡선에 미치는 영향에 대한 연구)

  • Kang, Seonghee;Kim, Jeonghwan;Kim, Dokyung;Kang, Bosun
    • Journal of the Korean Society of Radiology
    • /
    • v.6 no.6
    • /
    • pp.507-513
    • /
    • 2012
  • This research was performed to evaluate the superparamagnetic iron oxide nanoparticles'(SPIONs) cell toxicity and to measure the radiation cell survival curve changes of SPIONs-uptake glioblastoma multiforme cells. The results could be practically used as the fundamental data to ameliorate proton beam cancer therapy, for example, providing necessary GBM treatment dose in the proton beam therapy when the therapy takes advantage of SPIONs. The assessment of the toxicological evaluation of synthesized SPIONs was accomplished by MTT assay as an in vitro experiment. The results showed no meaningful differences in the cell survival rate at the $1-100{\mu}g/ml$ SPIONs concentrations, but the cell toxicity was shown as the cell survival rate decreased up to 74.2% at the $200{\mu}g/ml$ SPIONs concentration. Then, we measured each radiation cell survival curve for U373MG cells and SPIONs-uptake U373MG cells with 0~5 Gy of proton beam irradiations. It is learned from the analysis of the experimental results that the SPION-uptake cells' radiation survival rate was more rapidly decreased as the irradiation dose increased. In conclusion we confirmed that SPIONs-uptake in U373MG cells induces cell death at the much less dose than the lethal dose of SPION-non-uptake cell. This research shows that the therapeutic efficacy of glioblastoma multiforme treatment in proton beam therapy can be improved by SPIONs targeting to the GBM cells.

Detection of Magnetic Nanoparticles in Tissue Using Magneto-Motive DP-OCT

  • Oh, Jung-Hwan;Lee, Ho;Kim, Jee-Hyun
    • Journal of the Optical Society of Korea
    • /
    • v.11 no.1
    • /
    • pp.26-33
    • /
    • 2007
  • We demonstrate the capability of differential-phase optical coherence tomography (DP-OCT) to detect superparamagnetic iron oxide (SPIO) nanoparticles taken up by liver parenchymeal macrophages (Kupffer cells). We apply an external time-varying high-intensity focused magnetic field. Our experiments demonstrate a novel diagnostic modality to detect macrophages that have taken up SPIO nanoparticles. Magnetic force acting on the nanoparticles was varied by applying a sinusoidal current to a solenoid containing a conical iron core that substantially increased and focused the magnetic field strength ($B_{max}$ = 2 Tesla). $ApoE^{-/-}$ mice were sacrificed 2 days post intravenous injections of different SPIO doses (1.0, and 0.1 mmol Fe/kg body weight). Livers of $ApoE^{-/-}$ mice with and without injection of SPIO nanoparticles were investigated using DP-OCT, which detects tissue movement with nanometer resolution. Frequency response of iron-laden liver movement was twice the stimulus frequency. Movement was not observed in livers of control mice. Results of our experiments indicate DP-OCT is a candidate methodology to detect tissue based macrophages containing SPIO nanoparticles excited by an external focused magnetic field.

Nanoparticle Contrast in Magneto-Motive Optical Doppler Tomography

  • Kim, Jee-Hyun;Oh, Jung-Hwan
    • Journal of the Optical Society of Korea
    • /
    • v.10 no.3
    • /
    • pp.99-104
    • /
    • 2006
  • We introduce a novel contrast mechanism for imaging superparamagnetic iron oxide (SPIO) nanoparticles (average diameter ${\sim}100nm$) using magneto-motive optical Doppler tomography (MM-ODT), which combines an externally applied temporally oscillating high-strength magnetic field with ODT to detect the nanoparticles flowing through a glass capillary tube. A solenoid cone-shaped ferrite core extensively increased the magnetic field strength ($B_{max}=1\;T,\;{\Delta}|B|^2=220T^2/m$) at the tip of the core and also focused the magnetic force on targeted samples. Nanoparticle contrast was demonstrated in a capillary tube filled with the SPIO solution by imaging the Doppler frequency shift which was observed independent of the flow rate and direction. Results suggest that MM-ODT may be a promising technique to enhance SPIO nanoparticle contrast for imaging fluid flow.

The NMRD Profiles of Ultrasmall Superparamagnetic Iron Oxide: Computer Simulation

  • 장용민;황문정;강덕식
    • Proceedings of the KSMRM Conference
    • /
    • 2001.11a
    • /
    • pp.107-107
    • /
    • 2001
  • 목적: 초상자성 nano-particle 조영제의 자기이완효과에 관한 out sphere 기전에 기초하여 각각의 자기장의 세기에서 T1/T2 자기이완율을 나타내는 NMRD profile을 수치적으로 simulation 하는 프로그램을 개발하고자 하였다. 대상 및 방법: 초상자성 nano-particle 조영제의 경우 초상자성 물질을 생체적합성 고분자로 표면 coating하기 때문에 상자성 조영제와는 달리 전적으로 "out sphere"기여도만을 고려하였고 또한 초상자성 물질의 경우 자기적 에너지의 크기가 매우 크기 때문에 상자성 조영제의 기전에서 사용되는 "low field"근사를 사용할 수 없으므로 Brillouin 함수로 표현되는 총자화에 대한 표현을 적용하였다. nano-particle내에 포함된 Fe 원자수에 따른 T1 및 T2 NMRD Profile과 온도에 따른 T1 및 T2 NMRD Profile 그리고 초상자성 nano-particle size에 따른 T1 및 T2 NMR Profile을 PC (CPU=800 Mhz, memory=128 MB) 환경하에서 symbolic computation tool 인 MathCad (MathCad, USA)를 사용하여 구현하였다.

  • PDF