Browse > Article
http://dx.doi.org/10.4283/JKMS.2012.22.5.167

Study on Formation Mechanism of Iron Oxide Nanoparticles  

Kim, Dong-Young (Department of Physics, Andong National University)
Yoon, Seok-Soo (Department of Physics, Andong National University)
Takahashi, Migaku (Department of Materials Science and Engineering, Chungnam National University, New Industry Creation Hatchery Center, Tohoku University)
Abstract
In order to analyze the formation mechanism of iron oxide nanoparticles, we measured the heat flow of $Fe(OL)_3$ precursor with temperature, and TEM images and AC susceptibility of aliquots samples sequentially taken from the reaction solution, respectively. The thermal decomposition of two OL-chain from $Fe(OL)_3$ produced the Fe-OL monomer, which were contributed to the formation of iron oxide nanoparticles. In the initial stage of nanoparticles formation, the small iron oxide nanoparticles had ${\gamma}-Fe_2O_3$ structure. However, as the iron oxide nanoparticles were rapidly growth, the iron oxide nanoparticles showed ${\gamma}-Fe_2O_3$-FeO core-shell structure which the FeO layer was formed on the surface of ${\gamma}-Fe_2O_3$ nanoparticles by insufficient oxygen supply from the reaction solution. These nanoparticles were transformed to $Fe_3O_4$ structure by oxidation during long aging time at high temperature. Finally, the $Fe_3O_4$ nanoparticles with high saturation magnetization and stable in the air could be easily synthesized by the thermal decomposition method.
Keywords
thermal decomposition; precursor; iron-oxide nanoparticles; superparamagnetic;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. V. Elst, and R. N. Muller, Chem. Rev. 108, 2064 (2008).   DOI   ScienceOn
2 J. Park, K. An, Y. Hwang, J.-G. Park, H.-J. Noh, J.-Y. Kim, J.-H. Park, N.-M. Hwang, and T. Hyeon, Nature Materials 3, 891 (2004).   DOI   ScienceOn
3 J. Park, E. Lee, N.-M. Hwang, M. Kang, S. C. Kim, Y. Hwang, J.-G. Park, H.-J. Noh, J.-Y. Kim, J.-H. Park, and T. Hyeon., Angew. Chem. Int. Ed. 44, 2872 (2005).   DOI   ScienceOn
4 L. M. Bronstein, J. E. Atkinson, A. G. Malyutin, F. Kidwai, B. D. Stein, D. G. Morgan, J. M. Perry, and J. A. Karty, Langmuir 27, 3044 (2011).   DOI   ScienceOn
5 D. Kim, N. Lee, M. Park, B. H. Kim, K. An, and T. Hyeon, J. Am. Chem. Soc. 131, 454 (2009).   DOI   ScienceOn
6 H. T. Hai, H. T. Yang, H. Kura, D. Hasegawa, Y. Ogata, M. Takahashi, and T. Ogawa, J. Colloid Interf. Sci. 346, 37 (2010).   DOI   ScienceOn
7 S.-J. Park, S. Kim, S. Lee, Z. G. Khim, K. Char, and T. Hyeon, J. Am. Chem. Soc. 122, 8581 (2000).   DOI   ScienceOn
8 H. Sun, B. Chen, X. Jiao, Z. Jiang, Z. Qin, and D. Chen, J. Phys. Chem. C 116, 5476 (2012).   DOI   ScienceOn
9 S. G. Kwon, Y. Piao, J. Park, S. Angappane, Y. Jo, N.-M. Hwang, J.-G. Park, and T. Hyeon, J. Am. Chem. Soc. 129, 12571 (2007).   DOI   ScienceOn
10 S. G. Kwon and T. Hyeon, Small 7, 2685 (2011).   DOI   ScienceOn
11 L. M. Bronstein, X. Huang, J. Retrum, A. Schmucker, M. Pink, B. D. Stein and B. Dragnea, Chem. Mater. 19, 3624 (2007).   DOI   ScienceOn
12 S. Palchoudhury, W. An, Y. Xu, Y. Qin, Z. Zhang, N. Chopra, R. A. Holler, C. H. Turner, and Y. Bao, Nano Lett. 11, 1141 (2011).   DOI   ScienceOn
13 Gerald F. Dionne, IEEE Trans. Magn. 39, 3121 (2003).   DOI   ScienceOn
14 M. Fang, V. Strom, R. T. Olsson, L. Belova, and K. V. Rao, Appl. Phys. Lett. 99, 222501 (2011).   DOI   ScienceOn
15 M. A. Morales, T. K. Jain, V. Labhasetwar, and D. L. Leslie-Pelecky, J. Appl. Phys. 97, 10Q905 (2005).   DOI   ScienceOn
16 http://en.wikipedia.org/wiki/Spontaneous_magnetization.