Browse > Article
http://dx.doi.org/10.12989/anr.2018.6.1.001

A review: Synthetic strategy control of magnetite nanoparticles production  

Yusoff, Ahmad H.M. (School of Bioprocess Engineeering, Universiti Malaysia Perlis)
Salimi, Midhat N. (School of Bioprocess Engineeering, Universiti Malaysia Perlis)
Jamlos, Mohd F. (School of Computer and Communication Engineering, University Malaysia Perlis)
Publication Information
Advances in nano research / v.6, no.1, 2018 , pp. 1-19 More about this Journal
Abstract
Iron oxide nanoparticles excite researcher interest in biomedical applications due to their low cost, biocompatibility and superparamagnetism properties. Magnetic iron oxide especially magnetite ($Fe_3O_4$) possessed a superparamagnetic behaviour at certain nanosize which beneficial for drug and gene delivery, diagnosis and imaging. The properties of nanoparticles mainly depend on their synthesis procedure. There has been a massive effort in developing the best synthetic strategies to yield appropriate physico-chemical properties namely co-precipitation, thermal decomposition, microemulsions, hydrothermal and sol-gel. In this review, it is discovered that magnetite nanoparticles are best yielded by co-precipitation method owing to their simplicity and large production. However, its magnetic saturation is within range of 70-80 emu/g which is lower than thermal decomposition and hydrothermal methods (80-90 emu/g) at 100 nm. Dimension wise, less than 100 nm is produced by co-precipitation method at $70^{\circ}C-80^{\circ}C$ while thermal decomposition and hydrothermal methods could produce less than 50 nm but at very high temperature ranging between $200^{\circ}C$ and $300^{\circ}C$. Thus, co-precipitation is the optimum method for pre-compliance magnetite nanoparticles preparation (e.g., 100 nm is fit enough for biomedical applications) since thermal decomposition and hydrothermal required more sophisticated facilities.
Keywords
nano-medicine; chemical synthesis; nano-particles; nanobiotechnology;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bilecka, I., Kubli, M., Amstad, E. and Niederberger, M. (2011), "Simultaneous formation of ferrite nanocrystals and deposition of thin films via a microwave-assisted nonaqueous sol-gel process", J. Sol-Gel Sci. Technol., 57(3), 313-322. DOI: 10.1007/s10971-010-2165-1   DOI
2 Burugapalli, K., Koul, V. and Dinda, A.K. (2004), "Effect of composition of interpenetrating polymer network hydrogels based on poly(acrylic acid) and gelatin on tissue response: a quantitative in vivo study", J. Biomed. Mater. Res. A, 68(2), 210-218. DOI: 10.1002/jbm.a.10117   DOI
3 Cai, W. and Wan, J. (2007), "Facile synthesis of superparamagnetic magnetite nanoparticles in liquid polyols", J. Colloid Interf. Sci., 305(2), 366-370. DOI: http://dx.doi.org/10.1016/j.jcis.2006.10.023   DOI
4 Candau, F., Kumar, P. and Mittal, K. (1999), Handbook of microemulsion science and technology; (P. Kumar), pp. 679-712.
5 Caruntu, D., Cushing, B.L., Caruntu, G. and O'Connor, C.J. (2005), "Attachment of gold nanograins onto colloidal magnetite nanocrystals", Chem. Mater., 17(13), 3398-3402. DOI: 10.1021/cm050280n   DOI
6 Chang, T.L. and Lee, Y.W. (2007), "Applications of magnetic nanoparticles in engineering and biomedical science", Proceedings of the 7th IEEE Conference on Nanotechnology, Hong Kong, China, August.
7 Cui, H., Liu, Y. and Ren, W. (2013), "Structure switch between ${\alpha}-Fe_2O_3$, ${\gamma}-Fe_2O_3$ and $Fe_3O_4$ during the large scale and low temperature sol-gel synthesis of nearly monodispersed iron oxide nanoparticles", Adv. Powder Technol., 24(1), 93-97. DOI: http://dx.doi.org/10.1016/j.apt.2012.03.001   DOI
8 Ahmed, N., Fessi, H. and Elaissari, A. (2012), "Theranostic applications of nanoparticles in cancer", Drug Discov. Today, 17(17-18), 928-934. DOI: 10.1016/j.drudis.2012.03.010   DOI
9 Patel, R.K., Mandal, S., Padhi, T. and Sahu, M.K. (2013), "Synthesis of Magnetic Iron-oxide Nanoparticle through Micro emulsion for Environmental Application", Proceedings of the 7th International Conference on Materials for Advance Technologies, Singapore, June-July.
10 Prabaharan, M., Grailer, J.J., Pilla, S., Steeber, D.A. and Gong, S. (2009), "Gold nanoparticles with a monolayer of doxorubicin-conjugated amphiphilic block copolymer for tumor-targeted drug delivery", Biomater., 30(30), 6065-6075. DOI: http://dx.doi.org/10.1016/j.biomaterials.2009.07.048   DOI
11 Wu, W., He, Q. and Jiang, C. (2008), "Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies", Nanoscale Res. Lett., 3(11), 397-415. DOI: 10.1007/s11671-008-9174-9   DOI
12 Wang, J., Zhang, B., Wang, L., Wang, M. and Gao, F. (2015), "One-pot synthesis of water-soluble superparamagnetic iron oxide nanoparticles and their MRI contrast effects in the mouse brains", Materials Sci. Eng.: C, 48(416-423), DOI: http://dx.doi.org/10.1016/j.msec.2014.12.026   DOI
13 Wani, K.D., Kadu, B.S., Mansara, P., Gupta, P., Deore, A.V., Chikate, R.C., Poddar, P., Dhole, S.D. and Kaul-Ghanekar, R. (2014), "Synthesis, characterization and in vitro study of biocompatible cinnamaldehyde functionalized magnetite nanoparticles (CPGF Nps) for hyperthermia and drug delivery applications in breast cancer", PLoS ONE, 9(9), e107315. DOI: 10.1371/journal.pone.0107315   DOI
14 Whitehead, K.A., Langer, R. and Anderson, D.G. (2009), "Knocking down barriers: advances in siRNA delivery", Nat. Rev. Drug Discov., 8(2), 129-138. DOI: 10.1038/nrd2742   DOI
15 Xavier, C.S., Paskocimas, C.A., Motta, F.V.D., Araujo, V.D., Aragon, M.J., Tirado, J.L., Lavela, P., Longo, E. and Delmonte, M.R.B. (2014), "Microwave-assisted hydrothermal synthesis of magnetite nanoparticles with potential use as anode in lithium ion batteries", Mater. Res., 17, 1065-1070.   DOI
16 Xu, C. and Teja, A.S. (2008), "Continuous hydrothermal synthesis of iron oxide and PVA-protected iron oxide nanoparticles", J. Supercrit. Fluids, 44(1), 85-91. DOI: http://dx.doi.org/10.1016/j.supflu.2007.09.033   DOI
17 Xu, J., Yang, H., Fu, W., Du, K., Sui, Y., Chen, J., Zeng, Y., Li, M. and Zou, G. (2007), "Preparation and magnetic properties of magnetite nanoparticles by sol-gel method", J. Magnet. Magnet. Mater., 309(2), 307-311. DOI: http://dx.doi.org/10.1016/j.jmmm.2006.07.037   DOI
18 Sheng-Nan, S., Chao, W., Zan-Zan, Z., Yang-Long, H., Venkatraman, S.S. and Zhi-Chuan, X. (2014), "Magnetic iron oxide nanoparticles: Synthesis and surface coating techniques for biomedical applications", Chin. Phys. B, 23.
19 Salas, G., Casado, C., Teran, F.J., Miranda, R., Serna, C.J. and Morales, M.P. (2012), "Controlled synthesis of uniform magnetite nanocrystals with high-quality properties for biomedical applications", J. Mater. Chem., 22(39), 21065-21075. DOI: 10.1039/C2JM34402E   DOI
20 Shapira, A., Livney, Y.D., Broxterman, H.J. and Assaraf, Y.G. (2011), "Nanomedicine for targeted cancer therapy: Towards the overcoming of drug resistance", Drug Resist. Updates, 14(3), 150-163. DOI: 10.1016/j.drup.2011.01.003   DOI
21 Shevchenko, E.V., Talapin, D.V., Rogach, A.L., Kornowski, A., Haase, M. and Weller, H. (2002), "Colloidal synthesis and self-assembly of CoPt(3) nanocrystals", J. Am. Chem. Soc., 124(38), 11480-11485.   DOI
22 Sun, Y.-k., Ma, M., Zhang, Y. and Gu, N. (2004), "Synthesis of nanometer-size maghemite particles from magnetite", Colloid. Surf. A: Physicochem. Eng. Aspects, 245(1-3), 15-19. DOI: http://dx.doi.org/10.1016/j.colsurfa.2004.05.009   DOI
23 Belaid, S., Laurent, S., Vermeech, M., Vander Elst, L., Perez-Morga, D. and Muller, R.N. (2013), "A new approach to follow the formation of iron oxide nanoparticles synthesized by thermal decomposition", Nanotechnology, 24(5), 055705. DOI: 10.1088/0957-4484/24/5/055705   DOI
24 Ahn, T., Kim, J.H., Yang, H.-M., Lee, J.W. and Kim, J.-D. (2012), "Formation Pathways of Magnetite Nanoparticles by Coprecipitation Method", J. Phys. Chem. C, 116(10), 6069-6076. DOI: 10.1021/jp211843g   DOI
25 Angermann, A. and Topfer, J. (2008), "Synthesis of magnetite nanoparticles by thermal decomposition of ferrous oxalate dihydrate", J. Mater. Sci., 43(15), 5123-5130. DOI: 10.1007/s10853-008-2738-3   DOI
26 Aniansson, E.A.G., Wall, S.N., Almgren, M., Hoffmann, H., Kielmann, I., Ulbricht, W., Zana, R., Lang, J. and Tondre, C. (1976), "Theory of the kinetics of micellar equilibria and quantitative interpretation of chemical relaxation studies of micellar solutions of ionic surfactants", J. Phys. Chem., 80(9), 905-922. DOI: 10.1021/j100550a001   DOI
27 Balazs, A.C., Emrick, T. and Russel, T.P. (2006), "Nanoparticle polymer composites: where two small worlds meet", Science, 314, 1107-1110.   DOI
28 Baumgartner, J., Morin, G., Menguy, N., Perez Gonzalez, T., Widdrat, M., Cosmidis, J. and Faivre, D. (2013), "Magnetotactic bacteria form magnetite from a phosphate-rich ferric hydroxide via nanometric ferric (oxyhydr)oxide intermediates", Proceedings of the National Academy of Sciences, 110(37), 14883-14888. DOI: 10.1073/pnas.1307119110   DOI
29 Bhattacharya, S., Mallik, D. and Nayar, S. (2011), "Comparative Study of Biomimetic Iron Oxides Synthesized Using Microwave Induced and Conventional Method", Magnetics, IEEE Transactions on, 47(6), 1647-1652. DOI: 10.1109/TMAG.2011.2104418   DOI
30 Sun, J., Zhou, S., Hou, P., Yang, Y., Weng, J., Li, X. and Li, M. (2007), "Synthesis and characterization of biocompatible $Fe_3O_4$ nanoparticles", J. Biomed. Mater. Res. Part A, 80A(2), 333-341. DOI: 10.1002/jbm.a.30909   DOI
31 Tietze, R., Zaloga, J., Unterweger, H., Lyer, S., Friedrich, R.P., Janko, C., Pottler, M., Durr, S. and Alexiou, C. (2015), "Magnetic nanoparticle-based drug delivery for cancer therapy", Biochem. Biophys. Res. Commun., 468(3), 463-470. DOI: http://dx.doi.org/10.1016/j.bbrc.2015.08.022   DOI
32 Sun, C., Du, K., Fang, C., Bhattarai, N., Veiseh, O., Kievit, F., Stephen, Z., Lee, D., Ellenbogen, R.G., Ratner, B. and Zhang, M. (2010), "PEG-Mediated Synthesis of Highly Dispersive Multifunctional Superparamagnetic Nanoparticles: Their Physicochemical Properties and Function In Vivo", ACS Nano, 4(4), 2402-2410. DOI: 10.1021/nn100190v   DOI
33 Sutka, A., Lagzdina, S., Kaambre, T., Parna, R., Kisand, V., Kleperis, J., Maiorov, M., Kikas, A., Kuusik, I. and Jakovlevs, D. (2015), "Study of the structural phase transformation of iron oxide nanoparticles from an Fe2+ ion source by precipitation under various synthesis parameters and temperatures", Mater. Chem. Phys, 149-150 , 473-479. DOI: http://dx.doi.org/10.1016/j.matchemphys.2014.10.048   DOI
34 Teja, A.S. and Koh, P.-Y. (2009), "Synthesis, properties, and applications of magnetic iron oxide nanoparticles", Progress in Crystal Growth and Characterization of Materials, 55(1-2), 22-45. DOI: http://dx.doi.org/10.1016/j.pcrysgrow.2008.08.003   DOI
35 Wang, B., Wei, Q. and Qu, S. (2013), "Synthesis and characterization of uniform and crystalline magnetite nanoparticles via oxidation-precipitation and modified co-precipitation methods", Int. J. Electrochem. Sci. 8, 3786-3793.
36 Yao, J., Yang, M. and Duan, Y. (2014), "Chemistry, biology, and medicine of fluorescent nanomaterials and related systems: new insights into biosensing, bioimaging, genomics, diagnostics, and therapy", Chem. Rev., 114(12), 6130-6178. DOI: 10.1021/cr200359p   DOI
37 Bilecka, I., Elser, P. and Niederberger, M. (2009), "Kinetic and thermodynamic aspects in the microwaveassisted synthesis of ZnO nanoparticles in benzyl alcohol", ACS Nano, 3(2), 467-477. DOI: 10.1021/nn800842b   DOI
38 Xu, Z., Shen, C., Tian, Y., Shi, X. and Gao, H.J. (2010), "Organic phase synthesis of monodisperse iron oxide nanocrystals using iron chloride as precursor", Nanoscale, 2(6), 1027-1032. DOI: 10.1039/B9NR00400A   DOI
39 Yan, J., Mo, S., Nie, J., Chen, W., Shen, X., Hu, J., Hao, G. and Tong, H. (2009), "Hydrothermal synthesis of monodisperse $Fe_3O_4$ nanoparticles based on modulation of tartaric acid", Colloid. Surf. A: Physicochem. Eng. Aspects, 340(1-3), 109-114. DOI: http://dx.doi.org/10.1016/j.colsurfa.2009.03.016   DOI
40 Yang, X., Jiang, W., Liu, L., Chen, B., Wu, S., Sun, D. and Li, F. (2012), "One-step hydrothermal synthesis of highly water-soluble secondary structural $Fe_3O_4$ nanoparticles", J. Magnet. Magnet. Mater., 324(14), 2249-2257. DOI: http://dx.doi.org/10.1016/j.jmmm.2012.02.111   DOI
41 Zhen, G., Muir, B.W., Moffat, B.A., Harbour, P., Murray, K.S., Moubaraki, B., Suzuki, K., Madsen, I., Agron-Olshina, N., Waddington, L. and Mulvaney, P. (2011), "Comparative study of the magnetic behavior of spherical and cubic superparamagnetic iron oxide nanoparticles", J. Phys. Chem. C, 115(2), 327-334. DOI: 10.1021/jp104953z   DOI
42 Zhu, Y., Jiang, F.Y., Chen, K., Kang, F. and Tang, Z.K. (2011), "Size-controlled synthesis of monodisperse superparamagnetic iron oxide nanoparticles", J. Alloys Compounds, 509(34), 8549-8553. DOI: http://dx.doi.org/10.1016/j.jallcom.2011.05.115   DOI
43 Dunlop, D.J. (1973), "Superparamagnetic and single-domain threshold sizes in magnetite", J. Geophys. Res., 78(11), 1780-1793. DOI: 10.1029/JB078i011p01780   DOI
44 de Souza, D.R., Duarte, E.T.F.M., de Souza Girardi, G., Velani, V., da Hora Machado, A.E., Sattler, C., de Oliveira, L. and de Miranda, J.A. (2006), "Study of kinetic parameters related to the degradation of an industrial effluent using Fenton-like reactions", J. Photochem. Photobiol. A: Chem., 179(3), 269-275. DOI: http://dx.doi.org/10.1016/j.jphotochem.2005.08.025   DOI
45 Deng, L., Ke, X., He, Z., Yang, D., Gong, H., Zhang, Y., Jing, X., Yao, J. and Chen, J. (2012), "A MSLN-targeted multifunctional nanoimmunoliposome for MRI and targeting therapy in pancreatic cancer", Int. J. Nanomed., 7(5053-5065), DOI: 10.2147/ijn.s34801   DOI
46 Dogan, M., Alkan, M., Turkyilmaz, A. and Ozdemir, Y. (2004), "Kinetics and mechanism of removal of methylene blue by adsorption onto perlite", J. Hazard Mater., 109(1-3), 141-148. DOI: 10.1016/j.jhazmat.2004.03.003   DOI
47 Dong, Z., Manimala, J. and Sun, C.T. (2010), "Mechanical behaviour of silica nanoparticle-impregnated kevlar fabrics", J. Mech. Mater. Struct., 5(4), 529-548.   DOI
48 Dormann, J.L., Gibart, P., Suran, C., Tholence, J.L. and Sella, C. (1980), "Superparamagnetism and relaxation effects in granular Fe-$Al_2O_3$ thin films", J. Magnet. Magnet. Mater., 15, 1121-1122. DOI: http://dx.doi.org/10.1016/0304-8853(80)90912-9   DOI
49 Hajjari, M., Ardjmand, M. and Tabatabaei, M. (2014), "Experimental investigation of the effect of cerium oxide nanoparticles as a combustion-improving additive on biodiesel oxidative stability: Mechanism", RSC Advances, 4(28), 14352-14356. DOI: 10.1039/C3RA47033D   DOI
50 Hodes, G. (2007), "When small is different: Some recent advances in concepts and applications of nanoscale phenomena", Adv. Mater., 19(5), 639-655. DOI: 10.1002/adma.200601173   DOI
51 Eicke, H.F., Borkovec, M. and Das-Gupta, B. (1989), "Conductivity of water-in-oil microemulsions: A quantitative charge fluctuation model", J. Phys. Chem., 93(1), 314-317. DOI: 10.1021/j100338a062   DOI
52 Esquivel, J., Facundo, I., Trevino, M.E. and Lopez, R. (2007), "A novel method to prepare magnetic nanoparticles: precipitation in bicontinuous microemulsions", J. Mater. Sci., 42(21), 9015-9020. DOI: 10.1007/s10853-007-1834-0   DOI
53 Estelrich, J., Escribano, E., Queralt, J. and Busquets, M. (2015), "Iron oxide nanoparticles for magnetically-guided and magnetically-responsive drug delivery", Int. J. Molecul. Sci., 16(4), 8070.   DOI
54 Jolivet, J.P., Belleville, P., Tronc, E. and Livage, J. (1992), "Influence of Fe(ii) on the formation of the spinel iron oxide in alkaline medium", Clay Clay Min., 40, 531-539.   DOI
55 Hu, L., Percheron, A., Chaumont, D. and Brachais, C.-H. (2011), "Microwave-assisted one-step hydrothermal synthesis of pure iron oxide nanoparticles: magnetite, maghemite and hematite", J. Sol-Gel Sci. Technol., 60(2), 198-205. DOI: 10.1007/s10971-011-2579-4   DOI
56 Hui, C., Shen, C., Yang, T., Bao, L., Tian, J., Ding, H., Li, C. and Gao, H.J. (2008), "Large-Scale Fe 3O 4 Nanoparticles Soluble in Water Synthesized by a Facile Method", J. Phys. Chemi. C, 112(30), 11336-11339. DOI: 10.1021/jp801632p   DOI
57 Jolivet, J.P., Chaneac, C., Prene, P., Vayssieres, L. and Tronc, E. (1997), "Wet chemistry of spinel iron oxide particles", J. Phys. IV France, 7(C1), C1-573.   DOI
58 Karaagac, O., Kockar, H., Beyaz, S. and Tanrisever, T. (2010), "A simple way to synthesize superparamagnetic iron oxide nanoparticles in air atmosphere: iron ion concentration effect", Magnetics, IEEE Transactions on, 46(12), 3978-3983. DOI: 10.1109/TMAG.2010.2076824   DOI
59 Karlsson, H.L., Holgersson, A. and Moller, L. (2008), "Mechanisms related to the genotoxicity of particles in the subway and from other sources", Chem. Res. Toxicol., 21(3), 726-731. DOI: 10.1021/tx7003568   DOI
60 Fdez-Gubieda, M.L., Muela, A., Alonso, J., Garcia-Prieto, A., Olivi, L., Fernandez-Pacheco, R. and Barandiaran, J.M. (2013), "Magnetite Biomineralization in Magnetospirillum gryphiswaldense: Time-Resolved Magnetic and Structural Studies", ACS Nano, 7(4), 3297-3305. DOI: 10.1021/nn3059983   DOI
61 Gao, X., Cui, Y., Levenson, R.M., Chung, L.W.K. and Nie, S. (2004), "In vivo cancer targeting and imaging with semiconductor quantum dots", Nat. Biotech., 22(8), 969-976. DOI: http://www.nature.com/nbt/journal/v22/n8/suppinfo/nbt994_S1.html   DOI
62 Guardia, P., Perez, N., Labarta, A. and Batlle, X. (2010), "Controlled synthesis of iron oxide nanoparticles over a wide size range", Langmuir, 26(8), 5843-5847. DOI: 10.1021/la903767e   DOI
63 Gao, G., Shi, R., Qin, W., Shi, Y., Xu, G., Qiu, G. and Liu, X. (2010), "Solvothermal synthesis and characterization of size-controlled monodisperse $Fe_3O_4$ nanoparticles", J. Mater. Sci., 45(13), 3483-3489. DOI: 10.1007/s10853-010-4378-7   DOI
64 Ge, S., Shi, X., Sun, K., Li, C., Uher, C., Baker Jr, J.R., Banaszak Holl, M.M. and Orr, B.G. (2009), "Facile hydrothermal synthesis of iron oxide nanoparticles with tunable magnetic properties", J. Phys. Chem. C, 113(31), 13593-13599. DOI: 10.1021/jp902953t   DOI
65 Gobe, M., Kon-No, K., Kandori, K. and Kitahara, A. (1983), "Preparation and characterization of monodisperse magnetite sols in WO microemulsion", J. Colloid Interf. Sci., 93(1), 293-295. DOI: http://dx.doi.org/10.1016/0021-9797(83)90411-3   DOI
66 Gupta, A.K. and Gupta, M. (2005), "Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications", Biomaterials, 26(18), 3995-4021. DOI: 10.1016/j.biomaterials.2004.10.012   DOI
67 Leong, T.Y., Cooper, K. and Leong, A.S. (2010), "Immunohistology--past, present, and future", Adv. Anat. Pathol., 17(6), 404-418. DOI: 10.1097/PAP.0b013e3181f8957c   DOI
68 Khalafalla, S. and Reimers, G. (1980), "Preparation of dilution-stable aqueous magnetic fluids", Magnetics, IEEE Transactions on, 16(2), 178-183. DOI: 10.1109/TMAG.1980.1060578   DOI
69 Lemine, O.M., Omri, K., Zhang, B., El Mir, L., Sajieddine, M., Alyamani, A. and Bououdina, M. (2012), "Sol-gel synthesis of 8 nm magnetite ($Fe_3O_4$) nanoparticles and their magnetic properties", Superlatt. Microstruct., 52(4), 793-799. DOI: http://dx.doi.org/10.1016/j.spmi.2012.07.009   DOI
70 Lenders, J.J.M., Altan, C.L., Bomans, P.H.H., Arakaki, A., Bucak, S., de With, G. and Sommerdijk, N.A.J.M. (2014), "A bioinspired coprecipitation method for the controlled synthesis of magnetite nanoparticles", Crystal Growth Des., 14(11), 5561-5568. DOI: 10.1021/cg500816z   DOI
71 Liang, M.T., Wang, S.H., Chang, Y.L., Hsiang, H.I., Huang, H.J., Tsai, M.H., Juan, W.C. and Lu, S.F. (2010), "Iron oxide synthesis using a continuous hydrothermal and solvothermal system", Ceramics Int., 36(3), 1131-1135. DOI: http://dx.doi.org/10.1016/j.ceramint.2009.09.044   DOI
72 Lim, J., Lanni, C., Evarts, E.R., Lanni, F., Tilton, R.D. and Majetich, S.A. (2011), "Magnetophoresis of Nanoparticles", ACS Nano, 5(1), 217-226. DOI: 10.1021/nn102383s   DOI
73 Liu, Z., Chen, K., Davis, C., Sherlock, S., Cao, Q., Chen, X. and Dai, H. (2008), "Drug delivery with carbon nanotubes for in vivo cancer treatment", Cancer Res., 68(16), 6652-6660. DOI: 10.1158/0008-5472.can-08-1468   DOI
74 Loo, A., Pineda, M., Saade, H., Trevino, M. and Lopez, R. (2008), "Synthesis of magnetic nanoparticles in bicontinuous microemulsions. Effect of surfactant concentration", J. Mater. Sci., 43(10), 3649-3654. DOI: 10.1007/s10853-008-2581-6   DOI
75 Mahdavi, M., Ahmad, M., Haron, M., Namvar, F., Nadi, B., Rahman, M. and Amin, J. (2013a), "Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications", Molecules, 18(7), 7533.   DOI
76 Lu, A.-H., Salabas, E.L. and Schuth, F. (2007), "Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application", Angewandte Chemie International Edition, 46(8), 1222-1244. DOI: 10.1002/anie.200602866   DOI
77 Lu, T., Wang, J., Yin, J., Wang, A., Wang, X. and Zhang, T. (2013), "Surfactant effects on the microstructures of $Fe_3O_4$ nanoparticles synthesized by microemulsion method". Colloid. Surf. A: Physicochem. Eng. Aspects, 43, 675-683. DOI: http://dx.doi.org/10.1016/j.colsurfa.2013.08.004   DOI
78 Mahdavi, M., Ahmad, M., Haron, M.J., Rahman, M.Z. and Fatehi, A. (2011), "Optimized conditions for graft copolymerization of poly(acrylamide) onto rubberwood fibre", BioResources, 6(4), 5110-5120.
79 Mahdavi, M., Namvar, F., Ahmad, M. and Mohamad, R. (2013b), "Green biosynthesis and characterization of magnetic iron oxide ($Fe_3O_4$) nanoparticles using seaweed (Sargassum muticum) aqueous extract", Molecules, 18(5), 5954-5964.   DOI
80 Mahmoudi, M., Simchi, A., Imani, M., Stroeve, P. and Sohrabi, A. (2010), "Templated growth of superparamagnetic iron oxide nanoparticles by temperature programming in the presence of poly(vinyl alcohol)", Thin Solid Films, 518(15), 4281-4289. DOI: http://dx.doi.org/10.1016/j.tsf.2009.12.112   DOI
81 Kim, D., Lee, N., Park, M., Kim, B.H., An, K. and Hyeon, T. (2009), "Synthesis of Uniform Ferrimagnetic Magnetite Nanocubes", J. Am. Chem. Soc., 131(2), 454-455. DOI: 10.1021/ja8086906   DOI
82 Khalil, M.I. (2015), "Co-precipitation in aqueous solution synthesis of magnetite nanoparticles using iron(III) salts as precursors", Arab. J. Chem., 8(2), 279-284. DOI: http://dx.doi.org/10.1016/j.arabjc.2015.02.008   DOI
83 Kharisov, B.I., Kharissova, O.V. and Mendez, U.O. (2012), Microwave Hydrothermal and Solvothermal Processing of Materials and Compounds.
84 Kievit, F.M. and Zhang, M. (2011), "Surface engineering of iron oxide nanoparticles for targeted cancer therapy", Acc. Chem. Res.3, 44(10), 853-862. DOI: 10.1021/ar2000277   DOI
85 Lam, T., Pouliot, P., Avti, P.K., Lesage, F. and Kakkar, A.K. (2013), "Superparamagnetic iron oxide based nanoprobes for imaging and theranostics", Adv. Colloid Interf. Sci., 199-200, 95-113. DOI: http://dx.doi.org/10.1016/j.cis.2013.06.007   DOI
86 Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Vander Elst, L. and Muller, R.N. (2008), "Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications", Chem. Rev., 108(6), 2064-2110. DOI: 10.1021/cr068445e   DOI
87 Lee, K.M., Sorensen, C.M., Klabunde, K.J. and Hadjipanayis, G.C. (1992), "Synthesis and characterization of stable colloidal $Fe_3O_4$ particles in water-in-oil microemulsions", Magnetics, IEEE Transactions on, 28(5), 3180-3182. DOI: 10.1109/20.179751   DOI
88 Maity, D., Choo, S.-G., Yi, J., Ding, J. and Xue, J.M. (2009), "Synthesis of magnetite nanoparticles via a solvent-free thermal decomposition route", J. Magnet. Magnet. Mater., 321(9), 1256-1259. DOI: http://dx.doi.org/10.1016/j.jmmm.2008.11.013   DOI
89 Lopez-Quintela, M.A., Tojo, C., Blanco, M.C., Garcia Rio, L. and Leis, J.R. (2004), "Microemulsion dynamics and reactions in microemulsions", Curr. Opin. Colloid Interf. Sci., 9(3-4), 264-278. DOI: http://dx.doi.org/10.1016/j.cocis.2004.05.029   DOI
90 Mahmoudi, M., Sant, S., Wang, B., Laurent, S. and Sen, T. (2011), "Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy", Adv. Drug Deliv. Rev., 63(1-2), 24-46. DOI: 10.1016/j.addr.2010.05.006   DOI
91 Maleki, H., Simchi, A., Imani, M. and Costa, B.F.O. (2012), "Size-controlled synthesis of superparamagnetic iron oxide nanoparticles and their surface coating by gold for biomedical applications", J. Magnet. Magnet. Mater., 324(23), 3997-4005. DOI: http://dx.doi.org/10.1016/j.jmmm.2012.06.045   DOI
92 Malyutin, A.G., Cheng, H., Sanchez-Felix, O.R., Carlson, K., Stein, B.D., Konarev, P.V., Svergun, D.I., Dragnea, B. and Bronstein, L.M. (2015), "Coat protein-dependent behavior of poly (ethylene glycol) tails in iron oxide core virus-like nanoparticles", ACS Appl. Mater. Interf., 7(22), 12089-12098. DOI: 10.1021/acsami.5b02278   DOI
93 Maurizi, L., Bouyer, F., Paris, J., Demoisson, F., Saviot, L. and Millot, N. (2011), "One step continuous hydrothermal synthesis of very fine stabilized superparamagnetic nanoparticles of magnetite", Chem. Commun., 47(42), 11706-11708. DOI: 10.1039/C1CC15470B   DOI
94 Merk, V., Chanana, M., Gierlinger, N., Hirt, A.M. and Burgert, I. (2014), "Hybrid wood materials with magnetic anisotropy dictated by the hierarchical cell structure", ACS Appl. Mater. Interf., 6(12), 9760-9767. DOI: 10.1021/am5021793   DOI
95 Owens, F.J. and Poole, C.P. (2008), The physics and chemistry of nanosolids. http://www.knovel.com/knovel2/Toc.jsp?BookID=2864
96 Park, J., Oh, S. and Ha, B. (2001), "Characterization of iron(III) oxide nanoparticles prepared by using ammonium acetate as precipitating agent", Korean J. Chem. Eng., 18(2), 215-219. DOI: 10.1007/BF02698462   DOI