References
- Ahmed, N., Fessi, H. and Elaissari, A. (2012), "Theranostic applications of nanoparticles in cancer", Drug Discov. Today, 17(17-18), 928-934. DOI: 10.1016/j.drudis.2012.03.010
- Ahn, T., Kim, J.H., Yang, H.-M., Lee, J.W. and Kim, J.-D. (2012), "Formation Pathways of Magnetite Nanoparticles by Coprecipitation Method", J. Phys. Chem. C, 116(10), 6069-6076. DOI: 10.1021/jp211843g
- Angermann, A. and Topfer, J. (2008), "Synthesis of magnetite nanoparticles by thermal decomposition of ferrous oxalate dihydrate", J. Mater. Sci., 43(15), 5123-5130. DOI: 10.1007/s10853-008-2738-3
- Aniansson, E.A.G., Wall, S.N., Almgren, M., Hoffmann, H., Kielmann, I., Ulbricht, W., Zana, R., Lang, J. and Tondre, C. (1976), "Theory of the kinetics of micellar equilibria and quantitative interpretation of chemical relaxation studies of micellar solutions of ionic surfactants", J. Phys. Chem., 80(9), 905-922. DOI: 10.1021/j100550a001
- Balazs, A.C., Emrick, T. and Russel, T.P. (2006), "Nanoparticle polymer composites: where two small worlds meet", Science, 314, 1107-1110. https://doi.org/10.1126/science.1130557
- Baumgartner, J., Morin, G., Menguy, N., Perez Gonzalez, T., Widdrat, M., Cosmidis, J. and Faivre, D. (2013), "Magnetotactic bacteria form magnetite from a phosphate-rich ferric hydroxide via nanometric ferric (oxyhydr)oxide intermediates", Proceedings of the National Academy of Sciences, 110(37), 14883-14888. DOI: 10.1073/pnas.1307119110
- Belaid, S., Laurent, S., Vermeech, M., Vander Elst, L., Perez-Morga, D. and Muller, R.N. (2013), "A new approach to follow the formation of iron oxide nanoparticles synthesized by thermal decomposition", Nanotechnology, 24(5), 055705. DOI: 10.1088/0957-4484/24/5/055705
- Bhattacharya, S., Mallik, D. and Nayar, S. (2011), "Comparative Study of Biomimetic Iron Oxides Synthesized Using Microwave Induced and Conventional Method", Magnetics, IEEE Transactions on, 47(6), 1647-1652. DOI: 10.1109/TMAG.2011.2104418
- Bilecka, I., Elser, P. and Niederberger, M. (2009), "Kinetic and thermodynamic aspects in the microwaveassisted synthesis of ZnO nanoparticles in benzyl alcohol", ACS Nano, 3(2), 467-477. DOI: 10.1021/nn800842b
- Bilecka, I., Kubli, M., Amstad, E. and Niederberger, M. (2011), "Simultaneous formation of ferrite nanocrystals and deposition of thin films via a microwave-assisted nonaqueous sol-gel process", J. Sol-Gel Sci. Technol., 57(3), 313-322. DOI: 10.1007/s10971-010-2165-1
- Burugapalli, K., Koul, V. and Dinda, A.K. (2004), "Effect of composition of interpenetrating polymer network hydrogels based on poly(acrylic acid) and gelatin on tissue response: a quantitative in vivo study", J. Biomed. Mater. Res. A, 68(2), 210-218. DOI: 10.1002/jbm.a.10117
- Cai, W. and Wan, J. (2007), "Facile synthesis of superparamagnetic magnetite nanoparticles in liquid polyols", J. Colloid Interf. Sci., 305(2), 366-370. DOI: http://dx.doi.org/10.1016/j.jcis.2006.10.023
- Candau, F., Kumar, P. and Mittal, K. (1999), Handbook of microemulsion science and technology; (P. Kumar), pp. 679-712.
- Caruntu, D., Cushing, B.L., Caruntu, G. and O'Connor, C.J. (2005), "Attachment of gold nanograins onto colloidal magnetite nanocrystals", Chem. Mater., 17(13), 3398-3402. DOI: 10.1021/cm050280n
- Chang, T.L. and Lee, Y.W. (2007), "Applications of magnetic nanoparticles in engineering and biomedical science", Proceedings of the 7th IEEE Conference on Nanotechnology, Hong Kong, China, August.
-
Cui, H., Liu, Y. and Ren, W. (2013), "Structure switch between
${\alpha}-Fe_2O_3$ ,${\gamma}-Fe_2O_3$ and$Fe_3O_4$ during the large scale and low temperature sol-gel synthesis of nearly monodispersed iron oxide nanoparticles", Adv. Powder Technol., 24(1), 93-97. DOI: http://dx.doi.org/10.1016/j.apt.2012.03.001 - de Souza, D.R., Duarte, E.T.F.M., de Souza Girardi, G., Velani, V., da Hora Machado, A.E., Sattler, C., de Oliveira, L. and de Miranda, J.A. (2006), "Study of kinetic parameters related to the degradation of an industrial effluent using Fenton-like reactions", J. Photochem. Photobiol. A: Chem., 179(3), 269-275. DOI: http://dx.doi.org/10.1016/j.jphotochem.2005.08.025
- Deng, L., Ke, X., He, Z., Yang, D., Gong, H., Zhang, Y., Jing, X., Yao, J. and Chen, J. (2012), "A MSLN-targeted multifunctional nanoimmunoliposome for MRI and targeting therapy in pancreatic cancer", Int. J. Nanomed., 7(5053-5065), DOI: 10.2147/ijn.s34801
- Dogan, M., Alkan, M., Turkyilmaz, A. and Ozdemir, Y. (2004), "Kinetics and mechanism of removal of methylene blue by adsorption onto perlite", J. Hazard Mater., 109(1-3), 141-148. DOI: 10.1016/j.jhazmat.2004.03.003
- Dong, Z., Manimala, J. and Sun, C.T. (2010), "Mechanical behaviour of silica nanoparticle-impregnated kevlar fabrics", J. Mech. Mater. Struct., 5(4), 529-548. https://doi.org/10.2140/jomms.2010.5.529
-
Dormann, J.L., Gibart, P., Suran, C., Tholence, J.L. and Sella, C. (1980), "Superparamagnetism and relaxation effects in granular Fe-
$Al_2O_3$ thin films", J. Magnet. Magnet. Mater., 15, 1121-1122. DOI: http://dx.doi.org/10.1016/0304-8853(80)90912-9 - Dunlop, D.J. (1973), "Superparamagnetic and single-domain threshold sizes in magnetite", J. Geophys. Res., 78(11), 1780-1793. DOI: 10.1029/JB078i011p01780
- Eicke, H.F., Borkovec, M. and Das-Gupta, B. (1989), "Conductivity of water-in-oil microemulsions: A quantitative charge fluctuation model", J. Phys. Chem., 93(1), 314-317. DOI: 10.1021/j100338a062
- Esquivel, J., Facundo, I., Trevino, M.E. and Lopez, R. (2007), "A novel method to prepare magnetic nanoparticles: precipitation in bicontinuous microemulsions", J. Mater. Sci., 42(21), 9015-9020. DOI: 10.1007/s10853-007-1834-0
- Estelrich, J., Escribano, E., Queralt, J. and Busquets, M. (2015), "Iron oxide nanoparticles for magnetically-guided and magnetically-responsive drug delivery", Int. J. Molecul. Sci., 16(4), 8070. https://doi.org/10.3390/ijms16048070
- Fdez-Gubieda, M.L., Muela, A., Alonso, J., Garcia-Prieto, A., Olivi, L., Fernandez-Pacheco, R. and Barandiaran, J.M. (2013), "Magnetite Biomineralization in Magnetospirillum gryphiswaldense: Time-Resolved Magnetic and Structural Studies", ACS Nano, 7(4), 3297-3305. DOI: 10.1021/nn3059983
- Gao, X., Cui, Y., Levenson, R.M., Chung, L.W.K. and Nie, S. (2004), "In vivo cancer targeting and imaging with semiconductor quantum dots", Nat. Biotech., 22(8), 969-976. DOI: http://www.nature.com/nbt/journal/v22/n8/suppinfo/nbt994_S1.html https://doi.org/10.1038/nbt994
-
Gao, G., Shi, R., Qin, W., Shi, Y., Xu, G., Qiu, G. and Liu, X. (2010), "Solvothermal synthesis and characterization of size-controlled monodisperse
$Fe_3O_4$ nanoparticles", J. Mater. Sci., 45(13), 3483-3489. DOI: 10.1007/s10853-010-4378-7 - Ge, S., Shi, X., Sun, K., Li, C., Uher, C., Baker Jr, J.R., Banaszak Holl, M.M. and Orr, B.G. (2009), "Facile hydrothermal synthesis of iron oxide nanoparticles with tunable magnetic properties", J. Phys. Chem. C, 113(31), 13593-13599. DOI: 10.1021/jp902953t
- Gobe, M., Kon-No, K., Kandori, K. and Kitahara, A. (1983), "Preparation and characterization of monodisperse magnetite sols in WO microemulsion", J. Colloid Interf. Sci., 93(1), 293-295. DOI: http://dx.doi.org/10.1016/0021-9797(83)90411-3
- Guardia, P., Perez, N., Labarta, A. and Batlle, X. (2010), "Controlled synthesis of iron oxide nanoparticles over a wide size range", Langmuir, 26(8), 5843-5847. DOI: 10.1021/la903767e
- Gupta, A.K. and Gupta, M. (2005), "Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications", Biomaterials, 26(18), 3995-4021. DOI: 10.1016/j.biomaterials.2004.10.012
- Hajjari, M., Ardjmand, M. and Tabatabaei, M. (2014), "Experimental investigation of the effect of cerium oxide nanoparticles as a combustion-improving additive on biodiesel oxidative stability: Mechanism", RSC Advances, 4(28), 14352-14356. DOI: 10.1039/C3RA47033D
- Hodes, G. (2007), "When small is different: Some recent advances in concepts and applications of nanoscale phenomena", Adv. Mater., 19(5), 639-655. DOI: 10.1002/adma.200601173
- Hu, L., Percheron, A., Chaumont, D. and Brachais, C.-H. (2011), "Microwave-assisted one-step hydrothermal synthesis of pure iron oxide nanoparticles: magnetite, maghemite and hematite", J. Sol-Gel Sci. Technol., 60(2), 198-205. DOI: 10.1007/s10971-011-2579-4
- Hui, C., Shen, C., Yang, T., Bao, L., Tian, J., Ding, H., Li, C. and Gao, H.J. (2008), "Large-Scale Fe 3O 4 Nanoparticles Soluble in Water Synthesized by a Facile Method", J. Phys. Chemi. C, 112(30), 11336-11339. DOI: 10.1021/jp801632p
- Jolivet, J.P., Chaneac, C., Prene, P., Vayssieres, L. and Tronc, E. (1997), "Wet chemistry of spinel iron oxide particles", J. Phys. IV France, 7(C1), C1-573. https://doi.org/10.1051/jp1:1997124
- Jolivet, J.P., Belleville, P., Tronc, E. and Livage, J. (1992), "Influence of Fe(ii) on the formation of the spinel iron oxide in alkaline medium", Clay Clay Min., 40, 531-539. https://doi.org/10.1346/CCMN.1992.0400506
- Karaagac, O., Kockar, H., Beyaz, S. and Tanrisever, T. (2010), "A simple way to synthesize superparamagnetic iron oxide nanoparticles in air atmosphere: iron ion concentration effect", Magnetics, IEEE Transactions on, 46(12), 3978-3983. DOI: 10.1109/TMAG.2010.2076824
- Karlsson, H.L., Holgersson, A. and Moller, L. (2008), "Mechanisms related to the genotoxicity of particles in the subway and from other sources", Chem. Res. Toxicol., 21(3), 726-731. DOI: 10.1021/tx7003568
- Khalafalla, S. and Reimers, G. (1980), "Preparation of dilution-stable aqueous magnetic fluids", Magnetics, IEEE Transactions on, 16(2), 178-183. DOI: 10.1109/TMAG.1980.1060578
- Khalil, M.I. (2015), "Co-precipitation in aqueous solution synthesis of magnetite nanoparticles using iron(III) salts as precursors", Arab. J. Chem., 8(2), 279-284. DOI: http://dx.doi.org/10.1016/j.arabjc.2015.02.008
- Kharisov, B.I., Kharissova, O.V. and Mendez, U.O. (2012), Microwave Hydrothermal and Solvothermal Processing of Materials and Compounds.
- Kievit, F.M. and Zhang, M. (2011), "Surface engineering of iron oxide nanoparticles for targeted cancer therapy", Acc. Chem. Res.3, 44(10), 853-862. DOI: 10.1021/ar2000277
- Kim, D., Lee, N., Park, M., Kim, B.H., An, K. and Hyeon, T. (2009), "Synthesis of Uniform Ferrimagnetic Magnetite Nanocubes", J. Am. Chem. Soc., 131(2), 454-455. DOI: 10.1021/ja8086906
- Lam, T., Pouliot, P., Avti, P.K., Lesage, F. and Kakkar, A.K. (2013), "Superparamagnetic iron oxide based nanoprobes for imaging and theranostics", Adv. Colloid Interf. Sci., 199-200, 95-113. DOI: http://dx.doi.org/10.1016/j.cis.2013.06.007
- Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Vander Elst, L. and Muller, R.N. (2008), "Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications", Chem. Rev., 108(6), 2064-2110. DOI: 10.1021/cr068445e
-
Lee, K.M., Sorensen, C.M., Klabunde, K.J. and Hadjipanayis, G.C. (1992), "Synthesis and characterization of stable colloidal
$Fe_3O_4$ particles in water-in-oil microemulsions", Magnetics, IEEE Transactions on, 28(5), 3180-3182. DOI: 10.1109/20.179751 -
Lemine, O.M., Omri, K., Zhang, B., El Mir, L., Sajieddine, M., Alyamani, A. and Bououdina, M. (2012), "Sol-gel synthesis of 8 nm magnetite (
$Fe_3O_4$ ) nanoparticles and their magnetic properties", Superlatt. Microstruct., 52(4), 793-799. DOI: http://dx.doi.org/10.1016/j.spmi.2012.07.009 - Lenders, J.J.M., Altan, C.L., Bomans, P.H.H., Arakaki, A., Bucak, S., de With, G. and Sommerdijk, N.A.J.M. (2014), "A bioinspired coprecipitation method for the controlled synthesis of magnetite nanoparticles", Crystal Growth Des., 14(11), 5561-5568. DOI: 10.1021/cg500816z
- Leong, T.Y., Cooper, K. and Leong, A.S. (2010), "Immunohistology--past, present, and future", Adv. Anat. Pathol., 17(6), 404-418. DOI: 10.1097/PAP.0b013e3181f8957c
- Liang, M.T., Wang, S.H., Chang, Y.L., Hsiang, H.I., Huang, H.J., Tsai, M.H., Juan, W.C. and Lu, S.F. (2010), "Iron oxide synthesis using a continuous hydrothermal and solvothermal system", Ceramics Int., 36(3), 1131-1135. DOI: http://dx.doi.org/10.1016/j.ceramint.2009.09.044
- Lim, J., Lanni, C., Evarts, E.R., Lanni, F., Tilton, R.D. and Majetich, S.A. (2011), "Magnetophoresis of Nanoparticles", ACS Nano, 5(1), 217-226. DOI: 10.1021/nn102383s
- Liu, Z., Chen, K., Davis, C., Sherlock, S., Cao, Q., Chen, X. and Dai, H. (2008), "Drug delivery with carbon nanotubes for in vivo cancer treatment", Cancer Res., 68(16), 6652-6660. DOI: 10.1158/0008-5472.can-08-1468
- Loo, A., Pineda, M., Saade, H., Trevino, M. and Lopez, R. (2008), "Synthesis of magnetic nanoparticles in bicontinuous microemulsions. Effect of surfactant concentration", J. Mater. Sci., 43(10), 3649-3654. DOI: 10.1007/s10853-008-2581-6
- Lopez-Quintela, M.A., Tojo, C., Blanco, M.C., Garcia Rio, L. and Leis, J.R. (2004), "Microemulsion dynamics and reactions in microemulsions", Curr. Opin. Colloid Interf. Sci., 9(3-4), 264-278. DOI: http://dx.doi.org/10.1016/j.cocis.2004.05.029
- Lu, A.-H., Salabas, E.L. and Schuth, F. (2007), "Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application", Angewandte Chemie International Edition, 46(8), 1222-1244. DOI: 10.1002/anie.200602866
-
Lu, T., Wang, J., Yin, J., Wang, A., Wang, X. and Zhang, T. (2013), "Surfactant effects on the microstructures of
$Fe_3O_4$ nanoparticles synthesized by microemulsion method". Colloid. Surf. A: Physicochem. Eng. Aspects, 43, 675-683. DOI: http://dx.doi.org/10.1016/j.colsurfa.2013.08.004 - Mahdavi, M., Ahmad, M., Haron, M.J., Rahman, M.Z. and Fatehi, A. (2011), "Optimized conditions for graft copolymerization of poly(acrylamide) onto rubberwood fibre", BioResources, 6(4), 5110-5120.
- Mahdavi, M., Ahmad, M., Haron, M., Namvar, F., Nadi, B., Rahman, M. and Amin, J. (2013a), "Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications", Molecules, 18(7), 7533. https://doi.org/10.3390/molecules18077533
-
Mahdavi, M., Namvar, F., Ahmad, M. and Mohamad, R. (2013b), "Green biosynthesis and characterization of magnetic iron oxide (
$Fe_3O_4$ ) nanoparticles using seaweed (Sargassum muticum) aqueous extract", Molecules, 18(5), 5954-5964. https://doi.org/10.3390/molecules18055954 - Mahmoudi, M., Simchi, A., Imani, M., Stroeve, P. and Sohrabi, A. (2010), "Templated growth of superparamagnetic iron oxide nanoparticles by temperature programming in the presence of poly(vinyl alcohol)", Thin Solid Films, 518(15), 4281-4289. DOI: http://dx.doi.org/10.1016/j.tsf.2009.12.112
- Mahmoudi, M., Sant, S., Wang, B., Laurent, S. and Sen, T. (2011), "Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy", Adv. Drug Deliv. Rev., 63(1-2), 24-46. DOI: 10.1016/j.addr.2010.05.006
- Maity, D., Choo, S.-G., Yi, J., Ding, J. and Xue, J.M. (2009), "Synthesis of magnetite nanoparticles via a solvent-free thermal decomposition route", J. Magnet. Magnet. Mater., 321(9), 1256-1259. DOI: http://dx.doi.org/10.1016/j.jmmm.2008.11.013
- Maleki, H., Simchi, A., Imani, M. and Costa, B.F.O. (2012), "Size-controlled synthesis of superparamagnetic iron oxide nanoparticles and their surface coating by gold for biomedical applications", J. Magnet. Magnet. Mater., 324(23), 3997-4005. DOI: http://dx.doi.org/10.1016/j.jmmm.2012.06.045
- Malyutin, A.G., Cheng, H., Sanchez-Felix, O.R., Carlson, K., Stein, B.D., Konarev, P.V., Svergun, D.I., Dragnea, B. and Bronstein, L.M. (2015), "Coat protein-dependent behavior of poly (ethylene glycol) tails in iron oxide core virus-like nanoparticles", ACS Appl. Mater. Interf., 7(22), 12089-12098. DOI: 10.1021/acsami.5b02278
- Maurizi, L., Bouyer, F., Paris, J., Demoisson, F., Saviot, L. and Millot, N. (2011), "One step continuous hydrothermal synthesis of very fine stabilized superparamagnetic nanoparticles of magnetite", Chem. Commun., 47(42), 11706-11708. DOI: 10.1039/C1CC15470B
- Merk, V., Chanana, M., Gierlinger, N., Hirt, A.M. and Burgert, I. (2014), "Hybrid wood materials with magnetic anisotropy dictated by the hierarchical cell structure", ACS Appl. Mater. Interf., 6(12), 9760-9767. DOI: 10.1021/am5021793
- Owens, F.J. and Poole, C.P. (2008), The physics and chemistry of nanosolids. http://www.knovel.com/knovel2/Toc.jsp?BookID=2864
- Park, J., Oh, S. and Ha, B. (2001), "Characterization of iron(III) oxide nanoparticles prepared by using ammonium acetate as precipitating agent", Korean J. Chem. Eng., 18(2), 215-219. DOI: 10.1007/BF02698462
- Patel, R.K., Mandal, S., Padhi, T. and Sahu, M.K. (2013), "Synthesis of Magnetic Iron-oxide Nanoparticle through Micro emulsion for Environmental Application", Proceedings of the 7th International Conference on Materials for Advance Technologies, Singapore, June-July.
- Prabaharan, M., Grailer, J.J., Pilla, S., Steeber, D.A. and Gong, S. (2009), "Gold nanoparticles with a monolayer of doxorubicin-conjugated amphiphilic block copolymer for tumor-targeted drug delivery", Biomater., 30(30), 6065-6075. DOI: http://dx.doi.org/10.1016/j.biomaterials.2009.07.048
- Salas, G., Casado, C., Teran, F.J., Miranda, R., Serna, C.J. and Morales, M.P. (2012), "Controlled synthesis of uniform magnetite nanocrystals with high-quality properties for biomedical applications", J. Mater. Chem., 22(39), 21065-21075. DOI: 10.1039/C2JM34402E
- Shapira, A., Livney, Y.D., Broxterman, H.J. and Assaraf, Y.G. (2011), "Nanomedicine for targeted cancer therapy: Towards the overcoming of drug resistance", Drug Resist. Updates, 14(3), 150-163. DOI: 10.1016/j.drup.2011.01.003
- Sheng-Nan, S., Chao, W., Zan-Zan, Z., Yang-Long, H., Venkatraman, S.S. and Zhi-Chuan, X. (2014), "Magnetic iron oxide nanoparticles: Synthesis and surface coating techniques for biomedical applications", Chin. Phys. B, 23.
- Shevchenko, E.V., Talapin, D.V., Rogach, A.L., Kornowski, A., Haase, M. and Weller, H. (2002), "Colloidal synthesis and self-assembly of CoPt(3) nanocrystals", J. Am. Chem. Soc., 124(38), 11480-11485. https://doi.org/10.1021/ja025976l
- Sun, Y.-k., Ma, M., Zhang, Y. and Gu, N. (2004), "Synthesis of nanometer-size maghemite particles from magnetite", Colloid. Surf. A: Physicochem. Eng. Aspects, 245(1-3), 15-19. DOI: http://dx.doi.org/10.1016/j.colsurfa.2004.05.009
-
Sun, J., Zhou, S., Hou, P., Yang, Y., Weng, J., Li, X. and Li, M. (2007), "Synthesis and characterization of biocompatible
$Fe_3O_4$ nanoparticles", J. Biomed. Mater. Res. Part A, 80A(2), 333-341. DOI: 10.1002/jbm.a.30909 - Sun, C., Du, K., Fang, C., Bhattarai, N., Veiseh, O., Kievit, F., Stephen, Z., Lee, D., Ellenbogen, R.G., Ratner, B. and Zhang, M. (2010), "PEG-Mediated Synthesis of Highly Dispersive Multifunctional Superparamagnetic Nanoparticles: Their Physicochemical Properties and Function In Vivo", ACS Nano, 4(4), 2402-2410. DOI: 10.1021/nn100190v
- Sutka, A., Lagzdina, S., Kaambre, T., Parna, R., Kisand, V., Kleperis, J., Maiorov, M., Kikas, A., Kuusik, I. and Jakovlevs, D. (2015), "Study of the structural phase transformation of iron oxide nanoparticles from an Fe2+ ion source by precipitation under various synthesis parameters and temperatures", Mater. Chem. Phys, 149-150 , 473-479. DOI: http://dx.doi.org/10.1016/j.matchemphys.2014.10.048
- Teja, A.S. and Koh, P.-Y. (2009), "Synthesis, properties, and applications of magnetic iron oxide nanoparticles", Progress in Crystal Growth and Characterization of Materials, 55(1-2), 22-45. DOI: http://dx.doi.org/10.1016/j.pcrysgrow.2008.08.003
- Tietze, R., Zaloga, J., Unterweger, H., Lyer, S., Friedrich, R.P., Janko, C., Pottler, M., Durr, S. and Alexiou, C. (2015), "Magnetic nanoparticle-based drug delivery for cancer therapy", Biochem. Biophys. Res. Commun., 468(3), 463-470. DOI: http://dx.doi.org/10.1016/j.bbrc.2015.08.022
- Wang, B., Wei, Q. and Qu, S. (2013), "Synthesis and characterization of uniform and crystalline magnetite nanoparticles via oxidation-precipitation and modified co-precipitation methods", Int. J. Electrochem. Sci. 8, 3786-3793.
- Wang, J., Zhang, B., Wang, L., Wang, M. and Gao, F. (2015), "One-pot synthesis of water-soluble superparamagnetic iron oxide nanoparticles and their MRI contrast effects in the mouse brains", Materials Sci. Eng.: C, 48(416-423), DOI: http://dx.doi.org/10.1016/j.msec.2014.12.026
- Wani, K.D., Kadu, B.S., Mansara, P., Gupta, P., Deore, A.V., Chikate, R.C., Poddar, P., Dhole, S.D. and Kaul-Ghanekar, R. (2014), "Synthesis, characterization and in vitro study of biocompatible cinnamaldehyde functionalized magnetite nanoparticles (CPGF Nps) for hyperthermia and drug delivery applications in breast cancer", PLoS ONE, 9(9), e107315. DOI: 10.1371/journal.pone.0107315
- Whitehead, K.A., Langer, R. and Anderson, D.G. (2009), "Knocking down barriers: advances in siRNA delivery", Nat. Rev. Drug Discov., 8(2), 129-138. DOI: 10.1038/nrd2742
- Wu, W., He, Q. and Jiang, C. (2008), "Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies", Nanoscale Res. Lett., 3(11), 397-415. DOI: 10.1007/s11671-008-9174-9
- Xavier, C.S., Paskocimas, C.A., Motta, F.V.D., Araujo, V.D., Aragon, M.J., Tirado, J.L., Lavela, P., Longo, E. and Delmonte, M.R.B. (2014), "Microwave-assisted hydrothermal synthesis of magnetite nanoparticles with potential use as anode in lithium ion batteries", Mater. Res., 17, 1065-1070. https://doi.org/10.1590/1516-1439.264714
- Xu, C. and Teja, A.S. (2008), "Continuous hydrothermal synthesis of iron oxide and PVA-protected iron oxide nanoparticles", J. Supercrit. Fluids, 44(1), 85-91. DOI: http://dx.doi.org/10.1016/j.supflu.2007.09.033
- Xu, J., Yang, H., Fu, W., Du, K., Sui, Y., Chen, J., Zeng, Y., Li, M. and Zou, G. (2007), "Preparation and magnetic properties of magnetite nanoparticles by sol-gel method", J. Magnet. Magnet. Mater., 309(2), 307-311. DOI: http://dx.doi.org/10.1016/j.jmmm.2006.07.037
- Xu, Z., Shen, C., Tian, Y., Shi, X. and Gao, H.J. (2010), "Organic phase synthesis of monodisperse iron oxide nanocrystals using iron chloride as precursor", Nanoscale, 2(6), 1027-1032. DOI: 10.1039/B9NR00400A
-
Yan, J., Mo, S., Nie, J., Chen, W., Shen, X., Hu, J., Hao, G. and Tong, H. (2009), "Hydrothermal synthesis of monodisperse
$Fe_3O_4$ nanoparticles based on modulation of tartaric acid", Colloid. Surf. A: Physicochem. Eng. Aspects, 340(1-3), 109-114. DOI: http://dx.doi.org/10.1016/j.colsurfa.2009.03.016 -
Yang, X., Jiang, W., Liu, L., Chen, B., Wu, S., Sun, D. and Li, F. (2012), "One-step hydrothermal synthesis of highly water-soluble secondary structural
$Fe_3O_4$ nanoparticles", J. Magnet. Magnet. Mater., 324(14), 2249-2257. DOI: http://dx.doi.org/10.1016/j.jmmm.2012.02.111 - Yao, J., Yang, M. and Duan, Y. (2014), "Chemistry, biology, and medicine of fluorescent nanomaterials and related systems: new insights into biosensing, bioimaging, genomics, diagnostics, and therapy", Chem. Rev., 114(12), 6130-6178. DOI: 10.1021/cr200359p
- Zhen, G., Muir, B.W., Moffat, B.A., Harbour, P., Murray, K.S., Moubaraki, B., Suzuki, K., Madsen, I., Agron-Olshina, N., Waddington, L. and Mulvaney, P. (2011), "Comparative study of the magnetic behavior of spherical and cubic superparamagnetic iron oxide nanoparticles", J. Phys. Chem. C, 115(2), 327-334. DOI: 10.1021/jp104953z
- Zhu, Y., Jiang, F.Y., Chen, K., Kang, F. and Tang, Z.K. (2011), "Size-controlled synthesis of monodisperse superparamagnetic iron oxide nanoparticles", J. Alloys Compounds, 509(34), 8549-8553. DOI: http://dx.doi.org/10.1016/j.jallcom.2011.05.115
Cited by
- Bare Iron Oxide Nanoparticles as Drug Delivery Carrier for the Short Cationic Peptide Lasioglossin vol.14, pp.5, 2021, https://doi.org/10.3390/ph14050405