DOI QR코드

DOI QR Code

A review: Synthetic strategy control of magnetite nanoparticles production

  • Yusoff, Ahmad H.M. (School of Bioprocess Engineeering, Universiti Malaysia Perlis) ;
  • Salimi, Midhat N. (School of Bioprocess Engineeering, Universiti Malaysia Perlis) ;
  • Jamlos, Mohd F. (School of Computer and Communication Engineering, University Malaysia Perlis)
  • Received : 2017.06.09
  • Accepted : 2017.11.06
  • Published : 2018.03.25

Abstract

Iron oxide nanoparticles excite researcher interest in biomedical applications due to their low cost, biocompatibility and superparamagnetism properties. Magnetic iron oxide especially magnetite ($Fe_3O_4$) possessed a superparamagnetic behaviour at certain nanosize which beneficial for drug and gene delivery, diagnosis and imaging. The properties of nanoparticles mainly depend on their synthesis procedure. There has been a massive effort in developing the best synthetic strategies to yield appropriate physico-chemical properties namely co-precipitation, thermal decomposition, microemulsions, hydrothermal and sol-gel. In this review, it is discovered that magnetite nanoparticles are best yielded by co-precipitation method owing to their simplicity and large production. However, its magnetic saturation is within range of 70-80 emu/g which is lower than thermal decomposition and hydrothermal methods (80-90 emu/g) at 100 nm. Dimension wise, less than 100 nm is produced by co-precipitation method at $70^{\circ}C-80^{\circ}C$ while thermal decomposition and hydrothermal methods could produce less than 50 nm but at very high temperature ranging between $200^{\circ}C$ and $300^{\circ}C$. Thus, co-precipitation is the optimum method for pre-compliance magnetite nanoparticles preparation (e.g., 100 nm is fit enough for biomedical applications) since thermal decomposition and hydrothermal required more sophisticated facilities.

Keywords

References

  1. Ahmed, N., Fessi, H. and Elaissari, A. (2012), "Theranostic applications of nanoparticles in cancer", Drug Discov. Today, 17(17-18), 928-934. DOI: 10.1016/j.drudis.2012.03.010
  2. Ahn, T., Kim, J.H., Yang, H.-M., Lee, J.W. and Kim, J.-D. (2012), "Formation Pathways of Magnetite Nanoparticles by Coprecipitation Method", J. Phys. Chem. C, 116(10), 6069-6076. DOI: 10.1021/jp211843g
  3. Angermann, A. and Topfer, J. (2008), "Synthesis of magnetite nanoparticles by thermal decomposition of ferrous oxalate dihydrate", J. Mater. Sci., 43(15), 5123-5130. DOI: 10.1007/s10853-008-2738-3
  4. Aniansson, E.A.G., Wall, S.N., Almgren, M., Hoffmann, H., Kielmann, I., Ulbricht, W., Zana, R., Lang, J. and Tondre, C. (1976), "Theory of the kinetics of micellar equilibria and quantitative interpretation of chemical relaxation studies of micellar solutions of ionic surfactants", J. Phys. Chem., 80(9), 905-922. DOI: 10.1021/j100550a001
  5. Balazs, A.C., Emrick, T. and Russel, T.P. (2006), "Nanoparticle polymer composites: where two small worlds meet", Science, 314, 1107-1110. https://doi.org/10.1126/science.1130557
  6. Baumgartner, J., Morin, G., Menguy, N., Perez Gonzalez, T., Widdrat, M., Cosmidis, J. and Faivre, D. (2013), "Magnetotactic bacteria form magnetite from a phosphate-rich ferric hydroxide via nanometric ferric (oxyhydr)oxide intermediates", Proceedings of the National Academy of Sciences, 110(37), 14883-14888. DOI: 10.1073/pnas.1307119110
  7. Belaid, S., Laurent, S., Vermeech, M., Vander Elst, L., Perez-Morga, D. and Muller, R.N. (2013), "A new approach to follow the formation of iron oxide nanoparticles synthesized by thermal decomposition", Nanotechnology, 24(5), 055705. DOI: 10.1088/0957-4484/24/5/055705
  8. Bhattacharya, S., Mallik, D. and Nayar, S. (2011), "Comparative Study of Biomimetic Iron Oxides Synthesized Using Microwave Induced and Conventional Method", Magnetics, IEEE Transactions on, 47(6), 1647-1652. DOI: 10.1109/TMAG.2011.2104418
  9. Bilecka, I., Elser, P. and Niederberger, M. (2009), "Kinetic and thermodynamic aspects in the microwaveassisted synthesis of ZnO nanoparticles in benzyl alcohol", ACS Nano, 3(2), 467-477. DOI: 10.1021/nn800842b
  10. Bilecka, I., Kubli, M., Amstad, E. and Niederberger, M. (2011), "Simultaneous formation of ferrite nanocrystals and deposition of thin films via a microwave-assisted nonaqueous sol-gel process", J. Sol-Gel Sci. Technol., 57(3), 313-322. DOI: 10.1007/s10971-010-2165-1
  11. Burugapalli, K., Koul, V. and Dinda, A.K. (2004), "Effect of composition of interpenetrating polymer network hydrogels based on poly(acrylic acid) and gelatin on tissue response: a quantitative in vivo study", J. Biomed. Mater. Res. A, 68(2), 210-218. DOI: 10.1002/jbm.a.10117
  12. Cai, W. and Wan, J. (2007), "Facile synthesis of superparamagnetic magnetite nanoparticles in liquid polyols", J. Colloid Interf. Sci., 305(2), 366-370. DOI: http://dx.doi.org/10.1016/j.jcis.2006.10.023
  13. Candau, F., Kumar, P. and Mittal, K. (1999), Handbook of microemulsion science and technology; (P. Kumar), pp. 679-712.
  14. Caruntu, D., Cushing, B.L., Caruntu, G. and O'Connor, C.J. (2005), "Attachment of gold nanograins onto colloidal magnetite nanocrystals", Chem. Mater., 17(13), 3398-3402. DOI: 10.1021/cm050280n
  15. Chang, T.L. and Lee, Y.W. (2007), "Applications of magnetic nanoparticles in engineering and biomedical science", Proceedings of the 7th IEEE Conference on Nanotechnology, Hong Kong, China, August.
  16. Cui, H., Liu, Y. and Ren, W. (2013), "Structure switch between ${\alpha}-Fe_2O_3$, ${\gamma}-Fe_2O_3$ and $Fe_3O_4$ during the large scale and low temperature sol-gel synthesis of nearly monodispersed iron oxide nanoparticles", Adv. Powder Technol., 24(1), 93-97. DOI: http://dx.doi.org/10.1016/j.apt.2012.03.001
  17. de Souza, D.R., Duarte, E.T.F.M., de Souza Girardi, G., Velani, V., da Hora Machado, A.E., Sattler, C., de Oliveira, L. and de Miranda, J.A. (2006), "Study of kinetic parameters related to the degradation of an industrial effluent using Fenton-like reactions", J. Photochem. Photobiol. A: Chem., 179(3), 269-275. DOI: http://dx.doi.org/10.1016/j.jphotochem.2005.08.025
  18. Deng, L., Ke, X., He, Z., Yang, D., Gong, H., Zhang, Y., Jing, X., Yao, J. and Chen, J. (2012), "A MSLN-targeted multifunctional nanoimmunoliposome for MRI and targeting therapy in pancreatic cancer", Int. J. Nanomed., 7(5053-5065), DOI: 10.2147/ijn.s34801
  19. Dogan, M., Alkan, M., Turkyilmaz, A. and Ozdemir, Y. (2004), "Kinetics and mechanism of removal of methylene blue by adsorption onto perlite", J. Hazard Mater., 109(1-3), 141-148. DOI: 10.1016/j.jhazmat.2004.03.003
  20. Dong, Z., Manimala, J. and Sun, C.T. (2010), "Mechanical behaviour of silica nanoparticle-impregnated kevlar fabrics", J. Mech. Mater. Struct., 5(4), 529-548. https://doi.org/10.2140/jomms.2010.5.529
  21. Dormann, J.L., Gibart, P., Suran, C., Tholence, J.L. and Sella, C. (1980), "Superparamagnetism and relaxation effects in granular Fe-$Al_2O_3$ thin films", J. Magnet. Magnet. Mater., 15, 1121-1122. DOI: http://dx.doi.org/10.1016/0304-8853(80)90912-9
  22. Dunlop, D.J. (1973), "Superparamagnetic and single-domain threshold sizes in magnetite", J. Geophys. Res., 78(11), 1780-1793. DOI: 10.1029/JB078i011p01780
  23. Eicke, H.F., Borkovec, M. and Das-Gupta, B. (1989), "Conductivity of water-in-oil microemulsions: A quantitative charge fluctuation model", J. Phys. Chem., 93(1), 314-317. DOI: 10.1021/j100338a062
  24. Esquivel, J., Facundo, I., Trevino, M.E. and Lopez, R. (2007), "A novel method to prepare magnetic nanoparticles: precipitation in bicontinuous microemulsions", J. Mater. Sci., 42(21), 9015-9020. DOI: 10.1007/s10853-007-1834-0
  25. Estelrich, J., Escribano, E., Queralt, J. and Busquets, M. (2015), "Iron oxide nanoparticles for magnetically-guided and magnetically-responsive drug delivery", Int. J. Molecul. Sci., 16(4), 8070. https://doi.org/10.3390/ijms16048070
  26. Fdez-Gubieda, M.L., Muela, A., Alonso, J., Garcia-Prieto, A., Olivi, L., Fernandez-Pacheco, R. and Barandiaran, J.M. (2013), "Magnetite Biomineralization in Magnetospirillum gryphiswaldense: Time-Resolved Magnetic and Structural Studies", ACS Nano, 7(4), 3297-3305. DOI: 10.1021/nn3059983
  27. Gao, X., Cui, Y., Levenson, R.M., Chung, L.W.K. and Nie, S. (2004), "In vivo cancer targeting and imaging with semiconductor quantum dots", Nat. Biotech., 22(8), 969-976. DOI: http://www.nature.com/nbt/journal/v22/n8/suppinfo/nbt994_S1.html https://doi.org/10.1038/nbt994
  28. Gao, G., Shi, R., Qin, W., Shi, Y., Xu, G., Qiu, G. and Liu, X. (2010), "Solvothermal synthesis and characterization of size-controlled monodisperse $Fe_3O_4$ nanoparticles", J. Mater. Sci., 45(13), 3483-3489. DOI: 10.1007/s10853-010-4378-7
  29. Ge, S., Shi, X., Sun, K., Li, C., Uher, C., Baker Jr, J.R., Banaszak Holl, M.M. and Orr, B.G. (2009), "Facile hydrothermal synthesis of iron oxide nanoparticles with tunable magnetic properties", J. Phys. Chem. C, 113(31), 13593-13599. DOI: 10.1021/jp902953t
  30. Gobe, M., Kon-No, K., Kandori, K. and Kitahara, A. (1983), "Preparation and characterization of monodisperse magnetite sols in WO microemulsion", J. Colloid Interf. Sci., 93(1), 293-295. DOI: http://dx.doi.org/10.1016/0021-9797(83)90411-3
  31. Guardia, P., Perez, N., Labarta, A. and Batlle, X. (2010), "Controlled synthesis of iron oxide nanoparticles over a wide size range", Langmuir, 26(8), 5843-5847. DOI: 10.1021/la903767e
  32. Gupta, A.K. and Gupta, M. (2005), "Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications", Biomaterials, 26(18), 3995-4021. DOI: 10.1016/j.biomaterials.2004.10.012
  33. Hajjari, M., Ardjmand, M. and Tabatabaei, M. (2014), "Experimental investigation of the effect of cerium oxide nanoparticles as a combustion-improving additive on biodiesel oxidative stability: Mechanism", RSC Advances, 4(28), 14352-14356. DOI: 10.1039/C3RA47033D
  34. Hodes, G. (2007), "When small is different: Some recent advances in concepts and applications of nanoscale phenomena", Adv. Mater., 19(5), 639-655. DOI: 10.1002/adma.200601173
  35. Hu, L., Percheron, A., Chaumont, D. and Brachais, C.-H. (2011), "Microwave-assisted one-step hydrothermal synthesis of pure iron oxide nanoparticles: magnetite, maghemite and hematite", J. Sol-Gel Sci. Technol., 60(2), 198-205. DOI: 10.1007/s10971-011-2579-4
  36. Hui, C., Shen, C., Yang, T., Bao, L., Tian, J., Ding, H., Li, C. and Gao, H.J. (2008), "Large-Scale Fe 3O 4 Nanoparticles Soluble in Water Synthesized by a Facile Method", J. Phys. Chemi. C, 112(30), 11336-11339. DOI: 10.1021/jp801632p
  37. Jolivet, J.P., Chaneac, C., Prene, P., Vayssieres, L. and Tronc, E. (1997), "Wet chemistry of spinel iron oxide particles", J. Phys. IV France, 7(C1), C1-573. https://doi.org/10.1051/jp1:1997124
  38. Jolivet, J.P., Belleville, P., Tronc, E. and Livage, J. (1992), "Influence of Fe(ii) on the formation of the spinel iron oxide in alkaline medium", Clay Clay Min., 40, 531-539. https://doi.org/10.1346/CCMN.1992.0400506
  39. Karaagac, O., Kockar, H., Beyaz, S. and Tanrisever, T. (2010), "A simple way to synthesize superparamagnetic iron oxide nanoparticles in air atmosphere: iron ion concentration effect", Magnetics, IEEE Transactions on, 46(12), 3978-3983. DOI: 10.1109/TMAG.2010.2076824
  40. Karlsson, H.L., Holgersson, A. and Moller, L. (2008), "Mechanisms related to the genotoxicity of particles in the subway and from other sources", Chem. Res. Toxicol., 21(3), 726-731. DOI: 10.1021/tx7003568
  41. Khalafalla, S. and Reimers, G. (1980), "Preparation of dilution-stable aqueous magnetic fluids", Magnetics, IEEE Transactions on, 16(2), 178-183. DOI: 10.1109/TMAG.1980.1060578
  42. Khalil, M.I. (2015), "Co-precipitation in aqueous solution synthesis of magnetite nanoparticles using iron(III) salts as precursors", Arab. J. Chem., 8(2), 279-284. DOI: http://dx.doi.org/10.1016/j.arabjc.2015.02.008
  43. Kharisov, B.I., Kharissova, O.V. and Mendez, U.O. (2012), Microwave Hydrothermal and Solvothermal Processing of Materials and Compounds.
  44. Kievit, F.M. and Zhang, M. (2011), "Surface engineering of iron oxide nanoparticles for targeted cancer therapy", Acc. Chem. Res.3, 44(10), 853-862. DOI: 10.1021/ar2000277
  45. Kim, D., Lee, N., Park, M., Kim, B.H., An, K. and Hyeon, T. (2009), "Synthesis of Uniform Ferrimagnetic Magnetite Nanocubes", J. Am. Chem. Soc., 131(2), 454-455. DOI: 10.1021/ja8086906
  46. Lam, T., Pouliot, P., Avti, P.K., Lesage, F. and Kakkar, A.K. (2013), "Superparamagnetic iron oxide based nanoprobes for imaging and theranostics", Adv. Colloid Interf. Sci., 199-200, 95-113. DOI: http://dx.doi.org/10.1016/j.cis.2013.06.007
  47. Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Vander Elst, L. and Muller, R.N. (2008), "Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications", Chem. Rev., 108(6), 2064-2110. DOI: 10.1021/cr068445e
  48. Lee, K.M., Sorensen, C.M., Klabunde, K.J. and Hadjipanayis, G.C. (1992), "Synthesis and characterization of stable colloidal $Fe_3O_4$ particles in water-in-oil microemulsions", Magnetics, IEEE Transactions on, 28(5), 3180-3182. DOI: 10.1109/20.179751
  49. Lemine, O.M., Omri, K., Zhang, B., El Mir, L., Sajieddine, M., Alyamani, A. and Bououdina, M. (2012), "Sol-gel synthesis of 8 nm magnetite ($Fe_3O_4$) nanoparticles and their magnetic properties", Superlatt. Microstruct., 52(4), 793-799. DOI: http://dx.doi.org/10.1016/j.spmi.2012.07.009
  50. Lenders, J.J.M., Altan, C.L., Bomans, P.H.H., Arakaki, A., Bucak, S., de With, G. and Sommerdijk, N.A.J.M. (2014), "A bioinspired coprecipitation method for the controlled synthesis of magnetite nanoparticles", Crystal Growth Des., 14(11), 5561-5568. DOI: 10.1021/cg500816z
  51. Leong, T.Y., Cooper, K. and Leong, A.S. (2010), "Immunohistology--past, present, and future", Adv. Anat. Pathol., 17(6), 404-418. DOI: 10.1097/PAP.0b013e3181f8957c
  52. Liang, M.T., Wang, S.H., Chang, Y.L., Hsiang, H.I., Huang, H.J., Tsai, M.H., Juan, W.C. and Lu, S.F. (2010), "Iron oxide synthesis using a continuous hydrothermal and solvothermal system", Ceramics Int., 36(3), 1131-1135. DOI: http://dx.doi.org/10.1016/j.ceramint.2009.09.044
  53. Lim, J., Lanni, C., Evarts, E.R., Lanni, F., Tilton, R.D. and Majetich, S.A. (2011), "Magnetophoresis of Nanoparticles", ACS Nano, 5(1), 217-226. DOI: 10.1021/nn102383s
  54. Liu, Z., Chen, K., Davis, C., Sherlock, S., Cao, Q., Chen, X. and Dai, H. (2008), "Drug delivery with carbon nanotubes for in vivo cancer treatment", Cancer Res., 68(16), 6652-6660. DOI: 10.1158/0008-5472.can-08-1468
  55. Loo, A., Pineda, M., Saade, H., Trevino, M. and Lopez, R. (2008), "Synthesis of magnetic nanoparticles in bicontinuous microemulsions. Effect of surfactant concentration", J. Mater. Sci., 43(10), 3649-3654. DOI: 10.1007/s10853-008-2581-6
  56. Lopez-Quintela, M.A., Tojo, C., Blanco, M.C., Garcia Rio, L. and Leis, J.R. (2004), "Microemulsion dynamics and reactions in microemulsions", Curr. Opin. Colloid Interf. Sci., 9(3-4), 264-278. DOI: http://dx.doi.org/10.1016/j.cocis.2004.05.029
  57. Lu, A.-H., Salabas, E.L. and Schuth, F. (2007), "Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application", Angewandte Chemie International Edition, 46(8), 1222-1244. DOI: 10.1002/anie.200602866
  58. Lu, T., Wang, J., Yin, J., Wang, A., Wang, X. and Zhang, T. (2013), "Surfactant effects on the microstructures of $Fe_3O_4$ nanoparticles synthesized by microemulsion method". Colloid. Surf. A: Physicochem. Eng. Aspects, 43, 675-683. DOI: http://dx.doi.org/10.1016/j.colsurfa.2013.08.004
  59. Mahdavi, M., Ahmad, M., Haron, M.J., Rahman, M.Z. and Fatehi, A. (2011), "Optimized conditions for graft copolymerization of poly(acrylamide) onto rubberwood fibre", BioResources, 6(4), 5110-5120.
  60. Mahdavi, M., Ahmad, M., Haron, M., Namvar, F., Nadi, B., Rahman, M. and Amin, J. (2013a), "Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications", Molecules, 18(7), 7533. https://doi.org/10.3390/molecules18077533
  61. Mahdavi, M., Namvar, F., Ahmad, M. and Mohamad, R. (2013b), "Green biosynthesis and characterization of magnetic iron oxide ($Fe_3O_4$) nanoparticles using seaweed (Sargassum muticum) aqueous extract", Molecules, 18(5), 5954-5964. https://doi.org/10.3390/molecules18055954
  62. Mahmoudi, M., Simchi, A., Imani, M., Stroeve, P. and Sohrabi, A. (2010), "Templated growth of superparamagnetic iron oxide nanoparticles by temperature programming in the presence of poly(vinyl alcohol)", Thin Solid Films, 518(15), 4281-4289. DOI: http://dx.doi.org/10.1016/j.tsf.2009.12.112
  63. Mahmoudi, M., Sant, S., Wang, B., Laurent, S. and Sen, T. (2011), "Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy", Adv. Drug Deliv. Rev., 63(1-2), 24-46. DOI: 10.1016/j.addr.2010.05.006
  64. Maity, D., Choo, S.-G., Yi, J., Ding, J. and Xue, J.M. (2009), "Synthesis of magnetite nanoparticles via a solvent-free thermal decomposition route", J. Magnet. Magnet. Mater., 321(9), 1256-1259. DOI: http://dx.doi.org/10.1016/j.jmmm.2008.11.013
  65. Maleki, H., Simchi, A., Imani, M. and Costa, B.F.O. (2012), "Size-controlled synthesis of superparamagnetic iron oxide nanoparticles and their surface coating by gold for biomedical applications", J. Magnet. Magnet. Mater., 324(23), 3997-4005. DOI: http://dx.doi.org/10.1016/j.jmmm.2012.06.045
  66. Malyutin, A.G., Cheng, H., Sanchez-Felix, O.R., Carlson, K., Stein, B.D., Konarev, P.V., Svergun, D.I., Dragnea, B. and Bronstein, L.M. (2015), "Coat protein-dependent behavior of poly (ethylene glycol) tails in iron oxide core virus-like nanoparticles", ACS Appl. Mater. Interf., 7(22), 12089-12098. DOI: 10.1021/acsami.5b02278
  67. Maurizi, L., Bouyer, F., Paris, J., Demoisson, F., Saviot, L. and Millot, N. (2011), "One step continuous hydrothermal synthesis of very fine stabilized superparamagnetic nanoparticles of magnetite", Chem. Commun., 47(42), 11706-11708. DOI: 10.1039/C1CC15470B
  68. Merk, V., Chanana, M., Gierlinger, N., Hirt, A.M. and Burgert, I. (2014), "Hybrid wood materials with magnetic anisotropy dictated by the hierarchical cell structure", ACS Appl. Mater. Interf., 6(12), 9760-9767. DOI: 10.1021/am5021793
  69. Owens, F.J. and Poole, C.P. (2008), The physics and chemistry of nanosolids. http://www.knovel.com/knovel2/Toc.jsp?BookID=2864
  70. Park, J., Oh, S. and Ha, B. (2001), "Characterization of iron(III) oxide nanoparticles prepared by using ammonium acetate as precipitating agent", Korean J. Chem. Eng., 18(2), 215-219. DOI: 10.1007/BF02698462
  71. Patel, R.K., Mandal, S., Padhi, T. and Sahu, M.K. (2013), "Synthesis of Magnetic Iron-oxide Nanoparticle through Micro emulsion for Environmental Application", Proceedings of the 7th International Conference on Materials for Advance Technologies, Singapore, June-July.
  72. Prabaharan, M., Grailer, J.J., Pilla, S., Steeber, D.A. and Gong, S. (2009), "Gold nanoparticles with a monolayer of doxorubicin-conjugated amphiphilic block copolymer for tumor-targeted drug delivery", Biomater., 30(30), 6065-6075. DOI: http://dx.doi.org/10.1016/j.biomaterials.2009.07.048
  73. Salas, G., Casado, C., Teran, F.J., Miranda, R., Serna, C.J. and Morales, M.P. (2012), "Controlled synthesis of uniform magnetite nanocrystals with high-quality properties for biomedical applications", J. Mater. Chem., 22(39), 21065-21075. DOI: 10.1039/C2JM34402E
  74. Shapira, A., Livney, Y.D., Broxterman, H.J. and Assaraf, Y.G. (2011), "Nanomedicine for targeted cancer therapy: Towards the overcoming of drug resistance", Drug Resist. Updates, 14(3), 150-163. DOI: 10.1016/j.drup.2011.01.003
  75. Sheng-Nan, S., Chao, W., Zan-Zan, Z., Yang-Long, H., Venkatraman, S.S. and Zhi-Chuan, X. (2014), "Magnetic iron oxide nanoparticles: Synthesis and surface coating techniques for biomedical applications", Chin. Phys. B, 23.
  76. Shevchenko, E.V., Talapin, D.V., Rogach, A.L., Kornowski, A., Haase, M. and Weller, H. (2002), "Colloidal synthesis and self-assembly of CoPt(3) nanocrystals", J. Am. Chem. Soc., 124(38), 11480-11485. https://doi.org/10.1021/ja025976l
  77. Sun, Y.-k., Ma, M., Zhang, Y. and Gu, N. (2004), "Synthesis of nanometer-size maghemite particles from magnetite", Colloid. Surf. A: Physicochem. Eng. Aspects, 245(1-3), 15-19. DOI: http://dx.doi.org/10.1016/j.colsurfa.2004.05.009
  78. Sun, J., Zhou, S., Hou, P., Yang, Y., Weng, J., Li, X. and Li, M. (2007), "Synthesis and characterization of biocompatible $Fe_3O_4$ nanoparticles", J. Biomed. Mater. Res. Part A, 80A(2), 333-341. DOI: 10.1002/jbm.a.30909
  79. Sun, C., Du, K., Fang, C., Bhattarai, N., Veiseh, O., Kievit, F., Stephen, Z., Lee, D., Ellenbogen, R.G., Ratner, B. and Zhang, M. (2010), "PEG-Mediated Synthesis of Highly Dispersive Multifunctional Superparamagnetic Nanoparticles: Their Physicochemical Properties and Function In Vivo", ACS Nano, 4(4), 2402-2410. DOI: 10.1021/nn100190v
  80. Sutka, A., Lagzdina, S., Kaambre, T., Parna, R., Kisand, V., Kleperis, J., Maiorov, M., Kikas, A., Kuusik, I. and Jakovlevs, D. (2015), "Study of the structural phase transformation of iron oxide nanoparticles from an Fe2+ ion source by precipitation under various synthesis parameters and temperatures", Mater. Chem. Phys, 149-150 , 473-479. DOI: http://dx.doi.org/10.1016/j.matchemphys.2014.10.048
  81. Teja, A.S. and Koh, P.-Y. (2009), "Synthesis, properties, and applications of magnetic iron oxide nanoparticles", Progress in Crystal Growth and Characterization of Materials, 55(1-2), 22-45. DOI: http://dx.doi.org/10.1016/j.pcrysgrow.2008.08.003
  82. Tietze, R., Zaloga, J., Unterweger, H., Lyer, S., Friedrich, R.P., Janko, C., Pottler, M., Durr, S. and Alexiou, C. (2015), "Magnetic nanoparticle-based drug delivery for cancer therapy", Biochem. Biophys. Res. Commun., 468(3), 463-470. DOI: http://dx.doi.org/10.1016/j.bbrc.2015.08.022
  83. Wang, B., Wei, Q. and Qu, S. (2013), "Synthesis and characterization of uniform and crystalline magnetite nanoparticles via oxidation-precipitation and modified co-precipitation methods", Int. J. Electrochem. Sci. 8, 3786-3793.
  84. Wang, J., Zhang, B., Wang, L., Wang, M. and Gao, F. (2015), "One-pot synthesis of water-soluble superparamagnetic iron oxide nanoparticles and their MRI contrast effects in the mouse brains", Materials Sci. Eng.: C, 48(416-423), DOI: http://dx.doi.org/10.1016/j.msec.2014.12.026
  85. Wani, K.D., Kadu, B.S., Mansara, P., Gupta, P., Deore, A.V., Chikate, R.C., Poddar, P., Dhole, S.D. and Kaul-Ghanekar, R. (2014), "Synthesis, characterization and in vitro study of biocompatible cinnamaldehyde functionalized magnetite nanoparticles (CPGF Nps) for hyperthermia and drug delivery applications in breast cancer", PLoS ONE, 9(9), e107315. DOI: 10.1371/journal.pone.0107315
  86. Whitehead, K.A., Langer, R. and Anderson, D.G. (2009), "Knocking down barriers: advances in siRNA delivery", Nat. Rev. Drug Discov., 8(2), 129-138. DOI: 10.1038/nrd2742
  87. Wu, W., He, Q. and Jiang, C. (2008), "Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies", Nanoscale Res. Lett., 3(11), 397-415. DOI: 10.1007/s11671-008-9174-9
  88. Xavier, C.S., Paskocimas, C.A., Motta, F.V.D., Araujo, V.D., Aragon, M.J., Tirado, J.L., Lavela, P., Longo, E. and Delmonte, M.R.B. (2014), "Microwave-assisted hydrothermal synthesis of magnetite nanoparticles with potential use as anode in lithium ion batteries", Mater. Res., 17, 1065-1070. https://doi.org/10.1590/1516-1439.264714
  89. Xu, C. and Teja, A.S. (2008), "Continuous hydrothermal synthesis of iron oxide and PVA-protected iron oxide nanoparticles", J. Supercrit. Fluids, 44(1), 85-91. DOI: http://dx.doi.org/10.1016/j.supflu.2007.09.033
  90. Xu, J., Yang, H., Fu, W., Du, K., Sui, Y., Chen, J., Zeng, Y., Li, M. and Zou, G. (2007), "Preparation and magnetic properties of magnetite nanoparticles by sol-gel method", J. Magnet. Magnet. Mater., 309(2), 307-311. DOI: http://dx.doi.org/10.1016/j.jmmm.2006.07.037
  91. Xu, Z., Shen, C., Tian, Y., Shi, X. and Gao, H.J. (2010), "Organic phase synthesis of monodisperse iron oxide nanocrystals using iron chloride as precursor", Nanoscale, 2(6), 1027-1032. DOI: 10.1039/B9NR00400A
  92. Yan, J., Mo, S., Nie, J., Chen, W., Shen, X., Hu, J., Hao, G. and Tong, H. (2009), "Hydrothermal synthesis of monodisperse $Fe_3O_4$ nanoparticles based on modulation of tartaric acid", Colloid. Surf. A: Physicochem. Eng. Aspects, 340(1-3), 109-114. DOI: http://dx.doi.org/10.1016/j.colsurfa.2009.03.016
  93. Yang, X., Jiang, W., Liu, L., Chen, B., Wu, S., Sun, D. and Li, F. (2012), "One-step hydrothermal synthesis of highly water-soluble secondary structural $Fe_3O_4$ nanoparticles", J. Magnet. Magnet. Mater., 324(14), 2249-2257. DOI: http://dx.doi.org/10.1016/j.jmmm.2012.02.111
  94. Yao, J., Yang, M. and Duan, Y. (2014), "Chemistry, biology, and medicine of fluorescent nanomaterials and related systems: new insights into biosensing, bioimaging, genomics, diagnostics, and therapy", Chem. Rev., 114(12), 6130-6178. DOI: 10.1021/cr200359p
  95. Zhen, G., Muir, B.W., Moffat, B.A., Harbour, P., Murray, K.S., Moubaraki, B., Suzuki, K., Madsen, I., Agron-Olshina, N., Waddington, L. and Mulvaney, P. (2011), "Comparative study of the magnetic behavior of spherical and cubic superparamagnetic iron oxide nanoparticles", J. Phys. Chem. C, 115(2), 327-334. DOI: 10.1021/jp104953z
  96. Zhu, Y., Jiang, F.Y., Chen, K., Kang, F. and Tang, Z.K. (2011), "Size-controlled synthesis of monodisperse superparamagnetic iron oxide nanoparticles", J. Alloys Compounds, 509(34), 8549-8553. DOI: http://dx.doi.org/10.1016/j.jallcom.2011.05.115

Cited by

  1. Bare Iron Oxide Nanoparticles as Drug Delivery Carrier for the Short Cationic Peptide Lasioglossin vol.14, pp.5, 2021, https://doi.org/10.3390/ph14050405