• Title/Summary/Keyword: sulfurization

Search Result 45, Processing Time 0.024 seconds

Effect of the Sulfurization Temperature and Annealing Time of E-Beam Evaporated Sn Precursors on the Growth of SnSx Thin Films (E-빔 증착된 Sn 전구체의 황화 열처리 온도 및 시간에 따른 SnSx 박막 성장 효과)

  • Huang, Tingjian;Kim, Jeha
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.11
    • /
    • pp.734-739
    • /
    • 2017
  • We prepared $SnS_x$ thin films on both soda-lime glass (SLG) and molybdenum(Mo)/SLG substrates by a two-step process using a Sn precursor followed by sulfur reaction in rapid thermal annealing (RTA) at different sulfurization temperatures ($Ts=200^{\circ}C$, $230^{\circ}C$, $250^{\circ}C$, and $300^{\circ}C$) and annealing times ($t_s=10min$ and 30 min). The single SnS phase was dominant for $200^{\circ}C{\leq}T_s$<$250^{\circ}C$, while an additional phase of $SnS_2$ was appeared at $T_s{\geq}250^{\circ}C$ alongside SnS. The SnS grains in all the samples showed strong growth along the preferred [040] direction. The band-gap energy ($E_g$) of the films was estimated to be 1.24 eV.

Effect of H2S Concentration and Sulfurization Temperature on the Properties of Cu2ZnSnS4 Thin Films

  • Arepalli, Vinaya Kumar;Kim, Eui-Tae
    • Korean Journal of Materials Research
    • /
    • v.25 no.12
    • /
    • pp.708-712
    • /
    • 2015
  • This study reports the effects of $H_2S$ gas concentration on the properties of $Cu_2ZnSnS_4(CZTS)$ thin films. Specifically, sulfurization process with low $H_2S$ concentrations of 0.05% and 0.1%, along with 5% $H_2S$ gas, was studied. CZTS films were directly synthesized on Mo/Si substrates by chemical bath deposition method using copper sulfate, zinc sulfate heptahydrate, tin chloride dihydrate, and sodium thiosulfate pentahydrate. Smooth CZTS films were grown on substrates at optimized chemical bath deposition condition. The CZTS films sulfurized at low $H_2S$ concentrations of 0.05 % and 0.1% showed very rough and porous film morphology, whereas the film sulfurized at 5% $H_2S$ yielded a very smooth and dense film morphology. The CZTS films were fully crystallized in kesterite crystal form when they were sulfurized at $500^{\circ}C$ for 1 h. The kesterite CZTS film showed a reasonably good room-temperature photoluminescence spectrum that peaked in a range of 1.4 eV to 1.5 eV, consistent with the optimal bandgap for CZTS solar cell applications.

Fabrication and Characterization of Cu3SbS4 Solar Cell with Cd-free Buffer

  • Han, Gyuho;Lee, Ji Won;Kim, JunHo
    • Journal of the Korean Physical Society
    • /
    • v.73 no.11
    • /
    • pp.1794-1798
    • /
    • 2018
  • We have grown famatinite $Cu_3SbS_4$ films by using sulfurization of Cu/Sb stack film. Sulfurization at $500^{\circ}C$ produced famatinite $Cu_3SbS_4$ phase, while $400^{\circ}C$ and $450^{\circ}C$ sulfurization exhibited unreacted and mixed phases. The fabricated $Cu_3SbS_4$ film showed S-deficiency, and secondary phase of $Cu_{12}Sb_4S_{13}$. The secondary phase was confirmed by X-ray diffraction, Raman spectroscopy, photoluminescence and external quantum efficiency measurements. We have also fabricated solar cell in substrate type structure, ITO/ZnO/(Zn,Sn)O/$Cu_3SbS_4$/Mo/glass, where $Cu_3SbS_4$ was used as a absorber layer and (Zn,Sn)O was employed as a Cd-free buffer. Our best cell showed power conversion efficiency of 0.198%. Characterization results of $Cu_3SbS_4$ absorber indicates deep defect (due to S-deficiency) and low shunt resistance (due to $Cu_{12}Sb_4S_{13}$ phase). Thus in order to improve the cell efficiency, it is required to grow high quality $Cu_3SbS_4$ film with no S-deficiency and no secondary phase.

Cu2ZnSn(S,Se)4 Thin Film Solar Cells Fabricated by Sulfurization of Stacked Precursors Prepared Using Sputtering Process

  • Gang, Myeng Gil;Shin, Seung Wook;Lee, Jeong Yong;Kim, Jin Hyeok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.97-97
    • /
    • 2013
  • Recently, Cu2ZnSn(S,Se)4 (CZTSS), which is one of the In- and Ga- free absorber materials, has been attracted considerable attention as a new candidate for use as an absorber material in thin film solar cells. The CZTSS-based absorber material has outstanding characteristics such as band gap energy of 1.0 eV to 1.5 eV, high absorption coefficient on the order of 104 cm-1, and high theoretical conversion efficiency of 32.2% in thin film solar cells. Despite these promising characteristics, research into CZTSS based thin film solar cells is still incomprehensive and related reports are quite few compared to those for CIGS thin film solar cells, which show high efficiency of over 20%. I will briefly overview the recent technological development of CZTSS thin film solar cells and then introduce our research results mainly related to sputter based process. CZTSS thin film solar cells are prepared by sulfurization of stacked both metallic and sulfide precursors. Sulfurization process was performed in both furnace annealing system and rapid thermal processing system using S powder as well as 5% diluted H2S gas source at various annealing temperatures ranging from $520^{\circ}C$ to $580^{\circ}C$. Structural, optical, microstructural, and electrical properties of absorber layers were characterized using XRD, SEM, TEM, UV-Vis spectroscopy, Hall-measurement, TRPL, etc. The effects of processing parameters, such as composition ratio, sulfurization pressure, and sulfurization temperature on the properties of CZTSS absorber layers will be discussed in detail. CZTSS thin film solar cell fabricated using metallic precursors shows maximum cell efficiency of 6.9% with Jsc of 25.2 mA/cm2, Voc of 469 mV, and fill factor of 59.1% and CZTS thin film solar cell using sulfide precursors shows that of 4.5% with Jsc of 19.8 mA/cm2, Voc of 492 mV, and fill factor of 46.2%. In addition, other research activities in our lab related to the formation of CZTS absorber layers using solution based processes such as electro-deposition, chemical solution deposition, nano-particle formation will be introduced briefly.

  • PDF

Influence of Reduction Atmosphere and Temperature on the Separability and Distribution Behavior of Fe from FeTiO3 via Sulfurization (고온 황화반응에 의한 FeTiO3로부터 Fe의 분리성과 분배거동에 미치는 환원/황화 분위기 및 온도의 영향)

  • Shin, Seung-Hwan;Kim, Sun-Joong
    • Resources Recycling
    • /
    • v.28 no.3
    • /
    • pp.45-52
    • /
    • 2019
  • $TiO_2$ as a raw material for producing titanium can be produced by carbon reduction of natural ilmenite ores over 1823 K and acid leaching of the obtained titanium-rich slag. However, the conventional process can cause very high energy consumption and a large amount of leaching residues. In the present study, we proposed the sulfurization of $FeTiO_3$ with $Na_2SO_4$ at temperatures below 1573 K, which can separate Fe in $FeTiO_3$ as the FeS based sulfide phase and Ti as the $TiO_2-Na_2O$ based oxide phase. This study is a fundamental study for sulfurization of $FeTiO_3$ to investigate the influence of reducing atmosphere, reaction temperature and the sulfur/Fe ratio on the separability and distribution behaviors of of Fe, Ti, and Na between the oxide phase and the sulfurized phase. At 1573 K and carbon saturation condition, the Fe can be separated from $FeTiO_3$ as Fe-C-S metal and a part of FeS, and the concentration of Fe in oxide decreased to 4 mass% after sulfurization.

Sulfurization Reaction Characteristics of Eu-doped Uranium Oxides (유로퓸 고용(固溶) 우라늄산화물(酸化物)의 황화반응(黃化反應) 특성(特性))

  • Lee, Jae Won;Park, Geun Il;Lee, Jung Won
    • Resources Recycling
    • /
    • v.22 no.3
    • /
    • pp.57-64
    • /
    • 2013
  • Sulfurization reaction characteristics of $Eu_2O_3$, uranium oxides($UO_2$, $U_3O_8$), mixture of $Eu_2O_3$ and uranium oxides, Eu-doped uranium oxides($(U,Eu)O_2$, $(U,Eu)_3O_8$), and phase-separated products prepared by HOX (High temperature OXidation) of $(U,Eu)O_2$ were investigated in the temperature range from 400 to $800^{\circ}C$. Only $Eu_2O_3$ in the mixture of $Eu_2O_3$ and uranium oxides was converted into $Eu_3S_4$ by sulfurization reaction at $450^{\circ}C$ without reaction between them. Sulfurization reaction behavior of $(U,Eu)_3O_8$ and $(U,Eu)O_2$ up to $600^{\circ}C$ was similar to $U_3O_8$ and $UO_2$, respectively, while they were sulfurized into Eu-rich $(U,Eu)S_x$ and ${\alpha}-US_2$ at $800^{\circ}C$. In the sulfurization of RE-rich $(U,Eu)_4O_9$ and $U_3O_8$ prepared by high temperature oxidation, it was confirmed that RE-rich $(U,Eu)S_x$ and UOS phases were formed at $600^{\circ}C$. For Eu-rich $(U,Eu)O_2$ and $UO_2$ prepared by reduction of HOX products, it was identified that Eu-rich (U,Eu)OS was formed at $450^{\circ}C$ by sulfurization of Eu-rich $(U,Eu)O_2$, while $UO_2$ remained unreacted.

Sulfurization of Rare-Earth Oxides Using $H_2S$ and $SC_2$

  • Sato, Nobuaki;Sato, Soichi
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.02a
    • /
    • pp.60-63
    • /
    • 2004
  • Sulfurization of rare-earth oxides R203 (R=Nd, Eu) using sulfurizing reagents, such as $H_2S$ and $SC_2$was examined for the sulfide magnetic separation of spent fuel. $EU_2O_3$was found to react with H$_3$S gas forming the mixture of $EU_2O_2S$ and EuS at 500 oC, while EuS was formed by $SC_2$ at 800 oC. In the case of the mixture of $R_2O_3$and $UO_2$, EuS and $ND_3S_4$ were formed as well as $EU_2O_2S$ and $Nd_2O_2S$ at 500oC in $H_2S$, though $UO_2$ remained unreacted.

  • PDF

Synthesis of $Ba_2SiS_4:Eu^{2+}$ Blue-Green Phosphor Prepared by Spray Drying Method Using Water Soluble Silicon Compound

  • Tezuka, Satoko;Suzuki, Yoshihito;Petrykin, Valery;Kakihana, Masato
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.243-245
    • /
    • 2009
  • The single phase $Ba_2SiS_4$ doped with $Eu^{2+}$ was successfully synthesized by direct sulfurization of an oxide precursor prepared by a spray drying method using a novel water soluble silicon compound, which remains soluble in a given aqueous solution. The intensity of the emission peak of thus obtained $Ba_2SiS_4:Eu^{2+}$ was 1.75 times larger than that of a sample prepared by a solid state reaction method, and it approached 106% compared to one of the best commercially available YAG:$Ce^{3+}$ phosphor.

  • PDF

Synthesis of Solution-Processed Cu2ZnSnSe4 Thin Films on Transparent Conducting Oxide Glass Substrates

  • Ismail, Agus;Cho, Jin Woo;Park, Se Jin;Hwang, Yun Jeong;Min, Byoung Koun
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.7
    • /
    • pp.1985-1988
    • /
    • 2014
  • $Cu_2ZnSnSe_4$ (CZTSe) thin films were synthesized on transparent conducting oxide glass substrates via a simple, non-toxic, and low-cost process using a precursor solution paste. A three-step heating process (oxidation, sulfurization, and selenization) was employed to synthesize a CZTSe thin film as an absorber layer for use in thin-film solar cells. In particular, we focused on the effects of sulfurization conditions on CZTSe film formation. We found that sulfurization at $400^{\circ}C$ involves the formation of secondary phases such as $CuSe_2$ and $Cu_2SnSe_3$, but they gradually disappeared when the temperature was increased. The formed CZTSe thin films showed homogenous and good crystallinity with grain sizes of approximately 600 nm. A solar cell device was tentatively fabricated and showed a power conversion efficiency of 2.2% on an active area of 0.44 $cm^2$ with an open circuit voltage of 365 mV, a short current density of 20.6 $mA/cm^2$, and a fill factor of 28.7%.

Study of Growth and Temperature Dependence of SnS Thin Films Using a Rapid Thermal Processing (황화급속열처리를 이용한 SnS 박막성장 및 온도의존성 연구)

  • Shim, Ji-Hyun;Kim, Jeha
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.2
    • /
    • pp.95-100
    • /
    • 2016
  • We fabricated a tin sulfide (SnS) layer with Sn/Mo/glass layers followed by a RTP (rapid thermal processing), and studied the film growth and structural characteristics as a function of annealing temperature and time. The elemental sulfur (S) was cracked thermally and applied to form SnS polycrystalline film out of the Sn percursor at pre-determined pressures in the RTP tube. The sulfurization was done at the temperature from $200^{\circ}C$ to $500^{\circ}C$ for a time period of 10 to 40 min. At ${\leq}300^{\circ}C$, 20 min., p-type SnS thin films was grown and showed the best composition of at.% of [S]/[Sn] $${\sim_=}$$ 1 and [111] preferred orientation as investigated from using XRD (X-ray diffraction) analysis and EDS (energy dispersive spectroscopy) and SEM (scanning electron microscopy), and optical absorption by a UV-VIS spectrometer. In this paper, we report the details of growth characteristics of single phase SnS thin film as a function of annealing temperature and time associated with the pressure and ambient gas in the RTP tube.