DOI QR코드

DOI QR Code

Effect of H2S Concentration and Sulfurization Temperature on the Properties of Cu2ZnSnS4 Thin Films

  • Arepalli, Vinaya Kumar (Department of Materials Science and Engineering, Chungnam National University) ;
  • Kim, Eui-Tae (Department of Materials Science and Engineering, Chungnam National University)
  • Received : 2015.10.04
  • Accepted : 2015.11.01
  • Published : 2015.12.27

Abstract

This study reports the effects of $H_2S$ gas concentration on the properties of $Cu_2ZnSnS_4(CZTS)$ thin films. Specifically, sulfurization process with low $H_2S$ concentrations of 0.05% and 0.1%, along with 5% $H_2S$ gas, was studied. CZTS films were directly synthesized on Mo/Si substrates by chemical bath deposition method using copper sulfate, zinc sulfate heptahydrate, tin chloride dihydrate, and sodium thiosulfate pentahydrate. Smooth CZTS films were grown on substrates at optimized chemical bath deposition condition. The CZTS films sulfurized at low $H_2S$ concentrations of 0.05 % and 0.1% showed very rough and porous film morphology, whereas the film sulfurized at 5% $H_2S$ yielded a very smooth and dense film morphology. The CZTS films were fully crystallized in kesterite crystal form when they were sulfurized at $500^{\circ}C$ for 1 h. The kesterite CZTS film showed a reasonably good room-temperature photoluminescence spectrum that peaked in a range of 1.4 eV to 1.5 eV, consistent with the optimal bandgap for CZTS solar cell applications.

Keywords

References

  1. K. Ito and T. Nakazawa, Jpn. J. Appl. Phys., 27, 2094 (1988). https://doi.org/10.1143/JJAP.27.2094
  2. H. Katagiri, K. Saitoh, T. Washio, H. Shinohara, T. Kurumadani and S. Miyajima, Sol. Energy Mater. Sol. Cells, 65, 141 (2001). https://doi.org/10.1016/S0927-0248(00)00088-X
  3. K. Jimbo, R. Kimura, T. Kamimura, S. Yamada, W. S. Maw, H. Araki, K. Oishi and H. Katagiri, Thin Solid Films, 515, 5997 (2007). https://doi.org/10.1016/j.tsf.2006.12.103
  4. S. M. Pawar, A. V. Moholkar, I. K. Kim, S. W. Shin, J. H. Moon, J. I. Rhee and J. H. Kim, Curr. Appl. Phys., 10, 565 (2010). https://doi.org/10.1016/j.cap.2009.07.023
  5. A. V. Kumar, N. K. Park and E. T. Kim, Phys. Status Solidi A, 211, 1857 (2014). https://doi.org/10.1002/pssa.201330593
  6. N. Kamoun, H. Bouzouita and B. Rezig, Thin Solid Films, 515, 5949 (2007). https://doi.org/10.1016/j.tsf.2006.12.144
  7. C. C. Surya, C. P. Chan, H. Lam and K. Y. Wong, Sol. Energy Mater. Sol. Cells, 94, 207 (2010). https://doi.org/10.1016/j.solmat.2009.09.003
  8. K. Tanaka, N. Moritake and H. Uchiki, Sol. Energy Mater. Sol. Cells, 91, 1199 (2007). https://doi.org/10.1016/j.solmat.2007.04.012
  9. W. Wang, M. T. Winkler, O. Gunawan, T. Gokmen, T. K. Todorov, Y. Zhu and D. B. Mitzi, Adv. Energy Mater, 4, 1301465 (2013).
  10. J. He, L. Sun, K. Zhang, W. Wang, J. Jiang, Y. Chen, P. Yang and J. Chu, Appl. Surf. Sci., 264, 133 (2013). https://doi.org/10.1016/j.apsusc.2012.09.140
  11. J. He, L. Sun, Y. Chen, J. Jiang, P. Yang, J. Chu, J. Power Sources, 273, 600 (2015). https://doi.org/10.1016/j.jpowsour.2014.09.088
  12. M. I. Amal and K. H. Kim, Thin Solid Films, 534, 144 (2013). https://doi.org/10.1016/j.tsf.2013.02.028
  13. K. Maeda, K. Tanaka, Y. Fukui and H. Uchiki, Sol. Energy Mater. Sol. Cells, 95, 2855 (2011). https://doi.org/10.1016/j.solmat.2011.05.050
  14. P. A. Fernandes, P. M. P. Salome and A. F. Cunha, Thin Solid Films, 517, 2519 (2009). https://doi.org/10.1016/j.tsf.2008.11.031
  15. R. Caballero, E. Garcia-Llamas, J. M. Merino, M. Leon, I. Babichuk, V. Dzhagan, V. Strelchuk and M. Valakh, Acta Mater., 65, 412 (2014). https://doi.org/10.1016/j.actamat.2013.11.010