Browse > Article
http://dx.doi.org/10.7844/kirr.2019.28.3.45

Influence of Reduction Atmosphere and Temperature on the Separability and Distribution Behavior of Fe from FeTiO3 via Sulfurization  

Shin, Seung-Hwan (Dep. of Advanced Materials Engineering, Chosun University)
Kim, Sun-Joong (Dep. of Materials Engineering & Science, Chosun University)
Publication Information
Resources Recycling / v.28, no.3, 2019 , pp. 45-52 More about this Journal
Abstract
$TiO_2$ as a raw material for producing titanium can be produced by carbon reduction of natural ilmenite ores over 1823 K and acid leaching of the obtained titanium-rich slag. However, the conventional process can cause very high energy consumption and a large amount of leaching residues. In the present study, we proposed the sulfurization of $FeTiO_3$ with $Na_2SO_4$ at temperatures below 1573 K, which can separate Fe in $FeTiO_3$ as the FeS based sulfide phase and Ti as the $TiO_2-Na_2O$ based oxide phase. This study is a fundamental study for sulfurization of $FeTiO_3$ to investigate the influence of reducing atmosphere, reaction temperature and the sulfur/Fe ratio on the separability and distribution behaviors of of Fe, Ti, and Na between the oxide phase and the sulfurized phase. At 1573 K and carbon saturation condition, the Fe can be separated from $FeTiO_3$ as Fe-C-S metal and a part of FeS, and the concentration of Fe in oxide decreased to 4 mass% after sulfurization.
Keywords
$FeTiO_3$; Sulfurization; separation; reducing atmosphere; Fe-C-S;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 F. H. Froes, 1988 : The production of low-cost titanium powders. JOM, 50(9), pp.41-43.   DOI
2 W. Kroll, 1940 : The production of ductile titanium. Transactions of the Electrochemical Society, 78(1), pp.35-47.   DOI
3 G. Z. Chen, D. J. Fray, and T. W. Farthing, 2000 : Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride. Nature, 407(6802), pp.361.   DOI
4 K. Ono and R. O. Suzuki, 2002 : A new concept for producing Ti sponge: calciothermic reduction. JOM, 54(2), pp.59-61.   DOI
5 R. O. Suzuki, 2005 : Calciothermic reduction of $TiO_{2}$ and in situ electrolysis of CaO in the molten $CaCl_2$, Journal of Physics and Chemistry of Solids, 66(2-4), pp.461-465.   DOI
6 D. R. Sadoway, 1991 : The eelectrochemical processing of refractory metals. JOM, 43(7), pp.15-19.   DOI
7 T. H. Okabe, T. Oda, and Y. Mistuda, 2004 : Jounal of Alloys and Compounds. 364(1-2), pp.156-163.   DOI
8 T. H. Okabe, M. Nakamura, T. Oishi, and K. Ono, 1993 : Electrochemical deoxidation of titanium, Metallurgical and Materials Transactions B, 24(3), pp.449-455.   DOI
9 S. Jiao and H. Zhu, 2006 : Novel metallurgical process for titanium production, Journal of materials research, 21(9), pp.2172-2175.   DOI
10 Z. Yuan, X. Wang, C. Xu, W. Li, and M. Kwauk, 2006 : A new process for comprehensive utilization of complex titania ore, Minerals Engineering, 19(9), pp.975-978.   DOI
11 C. S. Kucullaragoz and R. H. Eric, 2006 : Solid state reduction of a natural ilmenite, Minerals Engineering, 19(3), pp.334-337.   DOI
12 S. Z. Eltawil, I. M. Morsi, and A. A. Francis, 2013 : Kientics of solid-state reduction of ilmenite ore, Canadaian Metallurgical Quarterly, 32(4), pp.281-288.
13 R. Merk and C. A. Pickles, 1988 : Reduction of ilmenite by carbon monoxide. Canadian Metallurgical Quarterly, 27(3), pp.179-185.   DOI
14 T. S. Mackey, 1974 : Acid leaching of ilmenite into synthetic rutile, Industrial & Engineering Chemistry Product Research and Development, 13(1), pp.9-18.   DOI
15 T. O. Kang and J. K. Yoon, 1978 : Reduction kinetics of synthetic ilmenite by graphite, J. Kor. Inst. Metals, 16(2), pp.80-89.
16 E. Park and O. Ostrovski, 2003 : Reduction of Titania-Ferrous Ore by Carbon Monoxide, ISIJ International, 43(9), pp.1316-1325.   DOI
17 H. Walter, 1994 : Process for the Production of Synthetic Rutile, United States Patent 5,601,630.
18 E. Park and O. Ostrovski, 2004 : Reduction of Titania-Ferrous Ore by Hydrogen, ISIJ International, 44(6), pp.999-1005.   DOI
19 J. H. Chen and C. Christi, 1974 : Beneficiation of Titaniferous Ores, United States Patent 3,825,419.
20 Schlechten, W. Albert et al., 1972 : Appendix D Letter Requesting Process Information, Companies Querite, and Replies, Processes for rutile substitutes, pp.130-132, NMAB-293, Washington, D.C., US.
21 N. Ma and N. A. Warner, 1999 : Smelting reduction of ilmenite by carbon in molten pig iron, Canadian metallurgical quarterly, 38(3), pp.165-173.   DOI
22 H. N. Sinha, 1973 : MURSO process for producing rutile substitute, R.I. Jaffe, H.M. Burte (Eds.), Titanium science and technology, pp.233-244, Cambridge, MA; A Publication of the Metallurgical Society of AIME 1973, Plenum Press, New York, London.
23 Y. I. Son, H. S. Sohn, and J. Y. Jung, 2018 : The effects of reductants on the behaviors of Fe selective chlorination using an ilmenite ore, Journal of Korean Institute of Resources Recycling, 27(3), pp.30-38.   DOI
24 H. S. Sohn and J. Y. Jung, 2016 : Current status ilmenite beneficiation technology for production of $TiO_2$, Journal of Korean Institute of Resources Recycling, 25(5), pp.64-74.   DOI
25 M. Liu, X. Lv, E. Guo, P. Chen, and Q. Yuan, 2014 : Novel process of ferronickel nugget production from nickel laterite by semi-molten state reduction, ISIJ International, 54(8), pp.1749-1754.   DOI
26 Q. Cheng, X. Zhang, Z. F. Huang, Z. Wang, and H. Zhou, 2013 : The DRESOR method for radiative heat transfer in semitransparent graded index cylindrical medium, Journal of Quantitative Spectroscopy and Radiative Transfer, 143(1), pp.16-24.
27 C. Geng, T. Sun, H. Yang, Y. Ma, E. Gao, and C. Xu, 2015 : Effect of $Na_2SO_4$ on the Embedding Direct Reduction of Beach Titanomagnetite and the Separation of Titanium and Iron by Magnetic Separation, ISIJ International, 55(12), pp.2543-2549.   DOI
28 W. Lv, X. Lv, J. Xiang, Y. Zhang, S. Li, C. Bai, and K. Han, 2017 : A novel process to prepare high-titanium slag by carbothermic reduction of pre-oxidized ilmenite concentrate with the addition of $Na_2SO_4$, International Journal of Mineral Processing, 167, pp.68-78.   DOI
29 G. Li, T. Shi, M. Rao, T. Jiang, and Y. Zhang, 2012 : Beneficiation of nickeliferous laterite by reduction roasting in the presence of sodium sulfate, Minerals Engineering, 32, pp.19-26.   DOI
30 F. D. Richardson and J. H. E. Jeffes, 1952 : The thermodynamics of substances of interest in iron and steel making. Journal of Iron Steel Institute, 171, pp.165-175.
31 J. P. Coughlin, 1954 : Bureau of Mines-Bulletin 542, Unitei-StatekS-Government Printing Office-Washington D. C, pp.23.
32 G. M. Kale and K. T. Jacob, 1992 : Chemical potential of oxygen for iron-rutile-ilmenite and iron-ilmenite-ulvospinel equilibria, Metallurgical Transactions B, 23(1), pp.57-64.   DOI
33 E. Maxwell and D. Kelland, 1978 : High gradient magnetic separation in coal desulfurization. IEEE Transactions on Magnetics, 14(5), pp.482-487.   DOI