Browse > Article
http://dx.doi.org/10.4313/JKEM.2016.29.2.95

Study of Growth and Temperature Dependence of SnS Thin Films Using a Rapid Thermal Processing  

Shim, Ji-Hyun (Department of Energy Conversion Eng., Cheongju University)
Kim, Jeha (Department of Energy Conversion Eng., Cheongju University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.29, no.2, 2016 , pp. 95-100 More about this Journal
Abstract
We fabricated a tin sulfide (SnS) layer with Sn/Mo/glass layers followed by a RTP (rapid thermal processing), and studied the film growth and structural characteristics as a function of annealing temperature and time. The elemental sulfur (S) was cracked thermally and applied to form SnS polycrystalline film out of the Sn percursor at pre-determined pressures in the RTP tube. The sulfurization was done at the temperature from $200^{\circ}C$ to $500^{\circ}C$ for a time period of 10 to 40 min. At ${\leq}300^{\circ}C$, 20 min., p-type SnS thin films was grown and showed the best composition of at.% of [S]/[Sn] $${\sim_=}$$ 1 and [111] preferred orientation as investigated from using XRD (X-ray diffraction) analysis and EDS (energy dispersive spectroscopy) and SEM (scanning electron microscopy), and optical absorption by a UV-VIS spectrometer. In this paper, we report the details of growth characteristics of single phase SnS thin film as a function of annealing temperature and time associated with the pressure and ambient gas in the RTP tube.
Keywords
Tin sulfide (SnS); Rapid thermal process; Sulfurization; Elemental sulfur(S); Annealing temperature;
Citations & Related Records
연도 인용수 순위
  • Reference
1 P. Jackson, D. Hariskos, R. Wuerz, O. Kiowski, A. Bauer, Phys. Status Solidi RRL, 9, 28 (2015). [DOI: http://dx.doi.org/10.1002/pssr.201409520]   DOI
2 J. Gifford, PV magazine, http://www.pv-magazine.com/news/details/beitrag/inside-tsmcs-165-cigs-module-worldrecord_100019430/#axzz3tQFcexg8 (2015).
3 C. Waida, A . Paulalivisatos, and D. Kammen, Environ. Sci. Technol. 43, 2072 (2009). [DOI: http://dx.doi.org/10.1021/es8019534]   DOI
4 M. A. Greeen, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, Solar cell efficiency tables. Prog. Photovoltaics Res Appl., 19, 565 (2011). [DOI: http://dx.doi.org/10.1002/pip.1150]   DOI
5 P. Sinsermsuksakul, L. Sun, S. W. Lee, H. H. Park, S. B. Kim, C. Yang, and R. G. Gordon, Adv. Energy Mat., 1400496 (2014).
6 P. Sinsermsuksakul, K. Hartman, S. D. Kim, J. Heo, L. Sun, H. H. Park, R. Chakraborty, T. Buonassisi, and R. G. Gordon, Applied Physics Letters, 102. 053901 (2013). [DOI: http://dx.doi.org/10.1063/1.4789855]   DOI
7 W. K. Kim, E. A. Payzant, T. J. Anderson, and O. D. Crisalle, Thin Solid Films 515, 5837 (2007). [DOI: http://dx.doi.org/10.1016/j.tsf.2006.12.173]   DOI
8 C. Cifuentes, M. Botero, E. Romero, C. Calderon, and G. Gordillo, Brazilian J. Phys., 36, 1046 (2006). [DOI: http://dx.doi.org/10.1590/S0103-97332006000600066]   DOI