• Title/Summary/Keyword: suction stress

Search Result 139, Processing Time 0.024 seconds

Liquefaction Behaviour and Prediction of Deviator Stress for Unsaturated Silty Sand

  • Lee, Dal-Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.7
    • /
    • pp.35-43
    • /
    • 2006
  • This study was carried out to investigate the liquefaction behaviour and predict deviator stress with matric suction, of unsaturated silty sand. The unsaturated soil tests were conducted using a modified triaxial cell and specimens were prepared using the moisture tamping method. The axis translation technique was used to create the desired matric suctions in the specimen. Undrained triaxial compression tests were carried out at matric suction of 0, 2, 5, 10 and 25 kPa. The specimens were sheared to axial strains of about 20% to obtain steady state conditions. The results showed that liquefaction of silty sand only occurs at matric suction of 0 kPa and 2 kPa. The results also show that at matric suctions of 5, 10 and 25 kPa, the resistance to liquefaction increases. As the suction increases, the undrained effective stress path approached the drained stress path. Also, the predicted and measured maximum deviator stress for unsaturated soils using the effective stress concept showed good agreement as matric suction increases. The deviator stress increase is nonlinear as matric suction increases.

Experimental approach to estimate strength for compacted geomaterials at low confining pressure

  • Kim, Byeong-Su;Kato, Shoji;Park, Seong-Wan
    • Geomechanics and Engineering
    • /
    • v.18 no.5
    • /
    • pp.459-469
    • /
    • 2019
  • It is important to estimate the shear strength of shallow compacted soils as a construction material. A series of constant water content triaxial compression (CWCC) tests under low confining state in this study were performed on compacted geomaterials. For establishing a relationship of the shear strengths between saturated and unsaturated states on compacted geomaterials, the suction stresses were derived by two methods: the conventional suction-measured method and the Suction stress-SWRC Method (SSM). Considering the suction stress as an equivalent confining stress component in the (${\sigma}_{net}$, ${\tau}$) plane, it was found that the peak deviator stress states agree well with the failure line of the saturated state from the triaxial compression test when the SSM is applied to obtain the suction stress. On the other hand, the cavitation phenomenon on the measurement of suction affected the results of the conventional suction-measured method. These results mean that the SSM is distinctly favorable for obtaining the suction value in the CWCC test because the SSM is not restricted by the cavitation phenomenon. It is expected that the application of the SSM would reduce the time required, and the projected cost with the additional equipment such as a pore water measuring device in the CWCC test.

Stability analysis of an unsaturated slope considering the suction stress (흡입응력을 고려한 불포화 사면의 안정해석법)

  • Song, Young-Suk;Lee, Nam-Woo;Hwang, Woong-Ki;Kim, Tae-Hyung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.764-771
    • /
    • 2010
  • The stability analysis method of an unsaturated slope considering the suction stress was performed on the infinite sand slope. During drying and wetting processes, the Soil-Water Characteristics Curve (SWCC) of the sand with the relative density of 75% was measured using the automated SWCC apparatus. Also, the Suction Stress Characteristics Curve (SSCC) was estimated. Based on these results, the stability analysis of an unsaturated infinite slope was carried out considering the slope angle, the weathering zone and the relative change in friction angle as a soil depth. According to the result of slope stability analysis, the safety factors of slope were less than 1 when the slope angles were more than $50^{\circ}$. The safety factors of slope tend to increase with increasing the depth from the ground surface. Especially, the safety factors have a tendency to increase and decrease above near the ground water level due to the suction stress. The maximum safety factor of slope in this analysis was occurred at the Air Entry Value (AEV) of drying process. The influence range of suction stress above the ground water level can be found out and can be defined as the funicular zone which means the metric suction range from the air entry point to the point of residual volumetric water content.

  • PDF

Density Effect on Suction Stress Characteristics of Compacted Weathered Gneiss Soils (편마풍화토의 다짐밀도에 따른 불포화 흡수응력 특성)

  • Park, Seong-Wan;Kim, Byeong-Su;Kwon, Hong-Gi;Lim, Jae-Seong
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.8
    • /
    • pp.15-25
    • /
    • 2013
  • In order to examine the unsaturated shear strength characteristics of compacted weathered gneiss soils, the constant water content compression (CWCC) test was carried out. Specimens were made by static compaction under two densities conditions. The shear behavior in accordance with an initial suction obtained by varying initial degrees of saturation was evaluated. The suction could be directly measured by the use of the ceramic disk and the pore-water pressure transducer. The results of the peak shear strength from the CWCC test were examined using the relationship with Mp line from triaxial test under the saturated state, that is, by means of the suction stress which was calculated using the measured suction. In addition, the applicability of the suctions stress to the unsaturated shear behaviour of compacted weathered gneiss soils was discussed by applying Suction stress-SWCC Method (SSM).

A semi-analytical solution to spherical cavity expansion in unsaturated soils

  • Tang, Jianhua;Wang, Hui;Li, Jingpei
    • Geomechanics and Engineering
    • /
    • v.25 no.4
    • /
    • pp.283-294
    • /
    • 2021
  • This paper presents a rigorous solution for spherical cavity expansion in unsaturated soils under constant suction condition. The hydraulic behavior that describes the saturation-suction relationship is modeled by a void ratio-dependent soil-water characteristic curve, which allows the hydraulic behavior to fully couple with the mechanical behavior that is described by an extended critical state soil model for unsaturated soil through the specific volume. Considering the boundary condition and introducing an auxiliary coordinate, the problem is formulated to a system of first-order differential equations with three principal stress components and suction as basic unknowns, which is solved as an initial value problem. Parameter analyses are conducted to investigate the effects of suction and the overconsolidation ratio on the overall expansion responses, including the pressure-expansion response, the distribution of the stress components around the cavity, and the stress path of the soil during cavity expansion. The results reveal that the expansion pressures and the distribution of the stress components in unsaturated soils are generally higher than those in saturated soils due to the existence of suction.

Spherical cavity expansion in overconsolidated unsaturated soil under constant suction condition

  • Wang, Hui;Yang, Changyi;Li, Jingpei
    • Geomechanics and Engineering
    • /
    • v.29 no.1
    • /
    • pp.1-11
    • /
    • 2022
  • A semi-analytical solution to responses of overconsolidated (OC) unsaturated soils surrounding an expanding spherical cavity under constant suction condition is presented. To capture the elastoplastic hydro-mechanical property of OC unsaturated soils, the unified hardening (UH) model for OC unsaturated soil is adopted in corporation with a soil-water characteristic curve (SWCC) and two suction yield surfaces. Taking the specific volume, radial stress, tangential stress and degree of saturation as the four basic unknowns, the problem investigated is formulated by solving a set of first-order ordinary differential equations with the help of an auxiliary variable and an iterative algorithm. The present solution is validated by comparing with available solution based on the modified Cam Clay (MCC) model. Parametric studies reveal that the hydraulic and mechanical responses of spherical cavity expanding in unsaturated soils are not only coupled, but also affected by suction and overconsolidation ratio (OCR) significantly. More importantly, whether hydraulic yield will occur or not depends only on the initial relationship between suction yield stress and suction. The presented solution can be used for calibration of some insitu tests in OC unsaturated soil.

Experimental Study on the Unsaturated Characteristics of Dredging Soils at Saemangeum Area (새만금지역 준설토의 불포화 특성에 대한 실험적 연구)

  • Song, Young-Suk;You, Seung-Kyong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.3
    • /
    • pp.25-32
    • /
    • 2011
  • The matric suction and volumetric water content of dredging soils obtained from Saemangeum area were measured by the automated Soil-Water Characteristic Curve (SWCC) apparatus under both drying and wetting conditions. Based on the test result, SWCCs of the dredging soils were estimated by the van Genuchten(1980) model. The matric suction of drying process is larger than that of wetting process at a same effective degree of saturation. The suction stresses for various matirc suctions were estimated using Lu and Likos(2006) model and the Suction Stress Characteristic Curves (SSCC) were predicted using the independent parameter of SWCC. The suction stress of drying path was increased and decreased, while the suction stress of wetting path was continuously decreased with increasing the effective degree. Also, the suction stress of drying path is larger than that of wetting path at a same effective degree of saturation. The Hydraulic Conductivity Function(HCF) was also predicted by the van Genuchten(1980) model. The hydraulic conductivity was increased with increasing the volumetric water content. The hydraulic conductivity of drying path is larger than that of wetting path at a same matric suction. According to the results of SWCCs and SSCCs, the hysteresis phenomenon of suction stress or matric suction during both drying and wetting paths was occurred. The main reason of hysteresis phenomenon is a ink bottle effect of water among soil particles.

Suction Changes During Static Compaction and an Estimate of the Consolidation Yield Stress in Compacted Soil (정적 다짐시의 흡인력 변화와 그 특성을 이용한 다짐토의 압밀항복응력 산정방법)

  • Kim Eun-Ra
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.5
    • /
    • pp.143-151
    • /
    • 2005
  • This paper presented a method to estimate the consolidation yield stress of compacted soil with an unsaturated soil mechanics, especially considering the effect of matric suction. Then two kinds of experiments were conducted. One is a series of static compaction tests to monitor the matric suction, and the other is a series of consolidation tests on compacted soil without soaking. The results indicate that it is possible to derive the distribution of matric suction on compaction curves and to hypothesize the changes of the void ratio depending on the matric suction in the consolidation tests. With this experimental results, a new method was introduced to estimate the consolidation yield stress of compacted soil including compaction curves.

A Estimate Method of the Consolidation Yield Stress in Compacted soil using the Mechanical Characteristics of Unsaturated soil (불포화토의 역학적 특성을 이용한 다짐토의 항복응력의 산정방법)

  • Kim, Eun-Ra;Iizuka, Atsushi;Kim, You-Seong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.121-128
    • /
    • 2005
  • This paper introduces a method of predicting the behavior of compacted soil with an unsaturated soil mechanics by considering the effect of suction as an increasing consolidation yield stress. Two kinds of experiments were conducted. One is a series of static compaction tests to monitor the suction, and the other is a series of compression tests on compacted soil without soaking. The results of our tests indicate that it is possible to derive the distribution of suction on compaction curves and to hypothesize the changes in void ratio in the compression tests that depends on the suction. In addition, a new method is proposed to estimate the consolidation yield stress of compacted soil with a simple chart including compaction curves.

  • PDF

A Study on the Volume Change in Unsaturated Clayey Soil (불포화 정성토의 체적변화에 대한 연구)

  • Chang, Pyoung-Wuck;Gil, Sang-Choon
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.5
    • /
    • pp.37-42
    • /
    • 1998
  • This study was performed to evaluate the characteristics of volume change is unsaturated clayed soil. The medium-plastic clay was selected and compacted by 50% of Proctor standard compaction energy at 6% higher moisture content than its OMC. A series of isotropic compression tests and triaxial shear tests were performed. The results of the study are summarized as follows. At each matric suction, when the matric suction was increased, the yield stress was increased and slope of volume change was decreased. The more net mean stress was, the less the quantity of volume change was. In shear test, the volumetric strain was much rapidly changed in large matric than in low matric suctions. But the effect of matric suction to volume change disappeared under high net mean stress. At lower deviator stress the more matric suction was, the higher volume change was. But As the matric suction was increasing, the behavior of the unsaturated clayey soil was similar to that of saturated clayey soil. Volume change in the unsaturated clayey soil can be represented as a unique plane in three-dimensional space, which is the axes of net mean stress, matric suction and void ratio.

  • PDF